1
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in a pancreatic cancer cell line. Sci Rep 2024; 14:15912. [PMID: 38987356 PMCID: PMC11236977 DOI: 10.1038/s41598-024-66244-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024] Open
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Allison V Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Michael M Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
2
|
Mondal P, Alyateem G, Mitchell AV, Gottesman MM. A whole-genome CRISPR screen identifies the spindle accessory checkpoint as a locus of nab-paclitaxel resistance in pancreatic cancer cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.15.580539. [PMID: 38410481 PMCID: PMC10896345 DOI: 10.1101/2024.02.15.580539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Pancreatic adenocarcinoma is one of the most aggressive and lethal forms of cancer. Chemotherapy is the primary treatment for pancreatic cancer, but resistance to the drugs used remains a major challenge. A genome-wide CRISPR interference and knockout screen in the PANC-1 cell line with the drug nab-paclitaxel has identified a group of spindle assembly checkpoint (SAC) genes that enhance survival in nab-paclitaxel. Knockdown of these SAC genes (BUB1B, BUB3, and TTK) attenuates paclitaxel-induced cell death. Cells treated with the small molecule inhibitors BAY 1217389 or MPI 0479605, targeting the threonine tyrosine kinase (TTK), also enhance survival in paclitaxel. Overexpression of these SAC genes does not affect sensitivity to paclitaxel. These discoveries have helped to elucidate the mechanisms behind paclitaxel cytotoxicity. The outcomes of this investigation may pave the way for a deeper comprehension of the diverse responses of pancreatic cancer to therapies including paclitaxel. Additionally, they could facilitate the formulation of novel treatment approaches for pancreatic cancer.
Collapse
Affiliation(s)
- Priya Mondal
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - George Alyateem
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Allison V. Mitchell
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Michael M. Gottesman
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| |
Collapse
|
3
|
Xu AP, Xu LB, Smith ER, Fleishman JS, Chen ZS, Xu XX. Cell death in cancer chemotherapy using taxanes. Front Pharmacol 2024; 14:1338633. [PMID: 38249350 PMCID: PMC10796453 DOI: 10.3389/fphar.2023.1338633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Cancer cells evolve to be refractory to the intrinsic programmed cell death mechanisms, which ensure cellular tissue homeostasis in physiological conditions. Chemotherapy using cytotoxic drugs seeks to eliminate cancer cells but spare non-cancerous host cells by exploring a likely subtle difference between malignant and benign cells. Presumably, chemotherapy agents achieve efficacy by triggering programmed cell death machineries in cancer cells. Currently, many major solid tumors are treated with chemotherapy composed of a combination of platinum agents and taxanes. Platinum agents, largely cis-platin, carboplatin, and oxaliplatin, are DNA damaging agents that covalently form DNA addicts, triggering DNA repair response pathways. Taxanes, including paclitaxel, docetaxel, and cabazitaxel, are microtubule stabilizing drugs which are often very effective in purging cancer cells in clinical settings. Generally, it is thought that the stabilization of microtubules by taxanes leads to mitotic arrest, mitotic catastrophe, and the triggering of apoptotic programmed cell death. However, the precise mechanism(s) of how mitotic arrest and catastrophe activate the caspase pathway has not been established. Here, we briefly review literature on the involvement of potential cell death mechanisms in cancer therapy. These include the classical caspase-mediated apoptotic programmed cell death, necroptosis mediated by MLKL, and pore forming mechanisms in immune cells, etc. In particular, we discuss a newly recognized mechanism of cell death in taxane-treatment of cancer cells that involves micronucleation and the irreversible rupture of the nuclear membrane. Since cancer cells are commonly retarded in responding to programmed cell death signaling, stabilized microtubule bundle-induced micronucleation and nuclear membrane rupture, rather than triggering apoptosis, may be a key mechanism accounting for the success of taxanes as anti-cancer agents.
Collapse
Affiliation(s)
- Ana P. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Lucy B. Xu
- Department of Biology, University of Miami, Coral Gables, FL, United States
| | - Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Joshua S. Fleishman
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John’s University, Queens, NY, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
4
|
Zhao N, Song Y, Xie X, Zhu Z, Duan C, Nong C, Wang H, Bao R. Synthetic biology-inspired cell engineering in diagnosis, treatment, and drug development. Signal Transduct Target Ther 2023; 8:112. [PMID: 36906608 PMCID: PMC10007681 DOI: 10.1038/s41392-023-01375-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 01/31/2023] [Accepted: 02/15/2023] [Indexed: 03/13/2023] Open
Abstract
The fast-developing synthetic biology (SB) has provided many genetic tools to reprogram and engineer cells for improved performance, novel functions, and diverse applications. Such cell engineering resources can play a critical role in the research and development of novel therapeutics. However, there are certain limitations and challenges in applying genetically engineered cells in clinical practice. This literature review updates the recent advances in biomedical applications, including diagnosis, treatment, and drug development, of SB-inspired cell engineering. It describes technologies and relevant examples in a clinical and experimental setup that may significantly impact the biomedicine field. At last, this review concludes the results with future directions to optimize the performances of synthetic gene circuits to regulate the therapeutic activities of cell-based tools in specific diseases.
Collapse
Affiliation(s)
- Ninglin Zhao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yingjie Song
- College of Life Science, Sichuan Normal University, Chengdu, China
| | - Xiangqian Xie
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Ziqi Zhu
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chenxi Duan
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Nong
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center of Nanjing University, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Rui Bao
- Division of Infectious Diseases, State Key Laboratory of Biotherapy and Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Huang D, Gui J, Chen X, Yu R, Gong T, Zhang Z, Fu Y. Chondroitin Sulfate-Derived Paclitaxel Nanocrystal via π-π Stacking with Enhanced Stability and Tumor Targetability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51776-51789. [PMID: 36350778 DOI: 10.1021/acsami.2c15881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nanocrystals with high drug loading have become a viable strategy for solubilizing drugs with poor aqueous solubility. It remains challenging, however, to synthesize nanocrystals with sufficient stability and targeting potential. Here, we report a novel nanocrystal platform synthesized using paclitaxel (PTX) and Fmoc-8-amino-3,6-dioxaoctanoic acid (Fmoc-AEEA)-conjugated chondroitin sulfate (CS) (CS-Fmoc) via π-π stacking to afford a stable formulation with CD44 targetability (PTX NC@CS-Fmoc). The PTX NC@CS-Fmoc exhibited rodlike shapes with an average hydrodynamic size of 173.6 ± 0.7 nm (PDI = 0.11 ± 0.04) and a drug loading of up to 31.3 ± 0.6%. Next, PTX NC@CS-Fmoc was subjected to lyophilization in the absence of cryoprotectants for long-term storage, and after redispersion, PTX NC@CS-Fmoc displayed an average hydrodynamic size of 205.3 ± 2.9 nm (PDI = 0.15 ± 0.01). In murine Panc02 cells, PTX NC@CS-Fmoc showed higher internalization efficiency than that of PTX nanocrystals without CS modification (PTX NC@F127) (P < 0.05) or that of CS-Fmoc micelles (P < 0.05). Moreover, PTX NC@CS-Fmoc appeared to accumulate in both lysosomes and Golgi apparatus, while CS-Fmoc micelles accumulated specifically in the Golgi apparatus. In the orthotopic Panc02 tumor-bearing mice model, PTX NC@CS-Fmoc showed higher tumor-specific accumulation than CS-Fmoc micelles, which also demonstrated comparable tumor growth inhibition as to Nab-PTX. Overall, the CS-Fmoc-derived nanocrystals represent a neat and viable formulation strategy for targeted chemotherapy with great potential for translational studies.
Collapse
Affiliation(s)
- Dandan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Jiajia Gui
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Xue Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Ruilian Yu
- Department of Oncology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu610072, China
| | - Tao Gong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu610041, China
| |
Collapse
|
6
|
Seborova K, Koucka K, Spalenkova A, Holy P, Ehrlichova M, Sychra T, Chen L, Bendale H, Ojima I, Sandoval-Acuña C, Truksa J, Soucek P, Vaclavikova R. Anticancer regimens containing third generation taxanes SB-T-121605 and SB-T-121606 are highly effective in resistant ovarian carcinoma model. Front Pharmacol 2022; 13:971905. [PMID: 36438837 PMCID: PMC9681785 DOI: 10.3389/fphar.2022.971905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/20/2022] [Indexed: 07/24/2024] Open
Abstract
Taxanes are widely used in the treatment of ovarian carcinomas. One of the main problems with conventional taxanes is the risk of development of multidrug resistance. New-generation synthetic experimental taxoids (Stony Brook Taxanes; SB-T) have shown promising effects against various resistant tumor models. The aim of our study was to compare the in vitro efficacy, intracellular content, and in vivo antitumor effect of clinically used paclitaxel (PTX) and SB-Ts from the previously tested second (SB-T-1214, SB-T-1216) and the newly synthesized third (SB-T-121402, SB-T-121605, and SB-T-121606) generation in PTX resistant ovarian carcinoma cells NCI/ADR-RES. The efficacy of the new SB-Ts was up to 50-times higher compared to PTX in NCI/ADR-RES cells in vitro. SB-T-121605 and SB-T-121606 induced cell cycle arrest in the G2/M phase much more effectively and their intracellular content was 10-15-times higher, when compared to PTX. Incorporation of SB-T-121605 and SB-T-121606 into therapeutic regimens containing PTX were effective in suppressing tumor growth in vivo in NCI/ADR-RES based mice xenografts at small doses (≤3 mg/kg), where their adverse effects were eliminated. In conclusion, new SB-T-121605 and SB-T-121606 analogs are promising candidates for the next phase of preclinical testing of their combination therapy with conventional taxanes in resistant ovarian carcinomas.
Collapse
Affiliation(s)
- Karolina Seborova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Kamila Koucka
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Alzbeta Spalenkova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Petr Holy
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Marie Ehrlichova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Tomas Sychra
- Third Faculty of Medicine, Charles University, Prague, Czech Republic
- Department of Surgery, University Hospital Kralovske Vinohrady and Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lei Chen
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Hersh Bendale
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Iwao Ojima
- Institute of Chemical Biology & Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY, United States
| | - Cristian Sandoval-Acuña
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Jaroslav Truksa
- Institute of Biotechnology of the Czech Academy of Sciences, BIOCEV Research Center, Vestec, Czech Republic
| | - Pavel Soucek
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Radka Vaclavikova
- Toxicogenomics Unit, National Institute of Public Health, Prague, Czech Republic
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
7
|
Smith ER, Wang JQ, Yang DH, Xu XX. Paclitaxel Resistance Related to Nuclear Envelope Structural SturdinessRunning Title: Lamin A/C Expression and Paclitaxel Resistance. Drug Resist Updat 2022; 65:100881. [DOI: 10.1016/j.drup.2022.100881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/29/2022]
|
8
|
Smith ER, Huang M, Schlumbrecht MP, George SH, Xu XX. Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy - non-mitotic mechanisms of paclitaxel. Front Oncol 2022; 12:907520. [PMID: 36185294 PMCID: PMC9520484 DOI: 10.3389/fonc.2022.907520] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Taxanes and CDK4/6 inhibitors (CDK4/6i) are two families of successful anti-mitotic drugs used in the treatment of solid tumors. Paclitaxel, representing taxane compounds, has been used either alone or in combination with other agents (commonly carboplatin/cisplatin) in the treatment of many solid tumors including ovarian, breast, lung, prostate cancers, and Kaposi's sarcoma. Paclitaxel has been routinely prescribed in cancer treatment since the 1990s, and its prominent role is unlikely to be replaced in the foreseeable future. Paclitaxel and other taxanes work by binding to and stabilizing microtubules, causing mitotic arrest, aberrant mitosis, and cell death. CDK4/6i (palbociclib, ribociclib, abemaciclib) are relatively new cell cycle inhibitors that have been found to be effective in breast cancer treatment, and are currently being developed in other solid tumors. CDK4/6i blocks cell cycle progression at the G1 phase, resulting in cell death by mechanisms not yet fully elucidated. At first glance, paclitaxel and CDK4/6i are unlikely synergistic agents as both are cell cycle inhibitors that work at different phases of the cell cycle, and few clinical trials have yet considered adding CDK4/6i to existing paclitaxel chemotherapy. However, recent findings suggest the importance of a non-mitotic mechanism of paclitaxel in cancer cell death and pre-clinical data support rationale for a strategic paclitaxel and CDK4/6i combination. In mouse tumor model studies, drug sequencing resulted in differential efficacy, indicating complex biological interactions of the two drugs. This article reviews the rationales of combining paclitaxel with CDK4/6i as a potential therapeutic option in recurrent ovarian cancer.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marilyn Huang
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Matthew P. Schlumbrecht
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Sophia H.L. George
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Xiang-Xi Xu
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
9
|
Chang C, Meng L, Li X, Cheng K, Yi C, Peng B, Ma J, Cao D. A Modified Regimen of 21-day Nab-Paclitaxel Plus Gemcitabine in Locally Advanced or Metastatic Pancreatic Cancer: A Retrospective Real-World Study. Cancer Control 2022; 29:10732748221141233. [PMID: 36423238 PMCID: PMC9703471 DOI: 10.1177/10732748221141233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND It is 1 of the standard treatment options for metastasis pancreatic cancer to receive nab-paclitaxel (125 mg/m2) plus gemcitabine (1000 mg/m2) on days 1, 8 and 15 every 28 days. Some patients showed intolerance and inconvenience to this therapeutic regimen. Thus, we conducted this retrospective real-world study to determine the efficacy and tolerability of a modified 21-day nab-paclitaxel plus gemcitabine (nab-P/Gem) regimen for the first-line treatment of locally advanced or metastatic pancreatic cancer. METHODS Patients with locally advanced and metastatic pancreatic cancer treated with nab-paclitaxel (125 mg/m2) plus gemcitabine (1000 mg/m2) on days 1 and 8 every 21-day at West China Hospital and Shang Jin Hospital of Sichuan University from Mar 2018 to Dec 2021 were reviewed retrospectively. Clinical characteristics of patients were collected. The progression-free survival, overall survival, objective response rate, disease control rate, and toxicity were evaluated. RESULTS A total of 113 patients who received the modified regimen of 21-day nab-P/Gem chemotherapy were included. The median overall survival was 9.3 months and the median progression-free survival was 4.4 months. The objective response rate and disease control rate were 18.6% and 56.7%, respectively. The median relative dose intensity for this modified regimen was 65%. The adverse events were mild to moderate, and the most common grade 3 or 4 treatment-related adverse events were neutropenia (21%) and leukopenia (16%). CONCLUSIONS Our study showed that this modified regimen of 21-day nab-P/Gem for locally advanced and metastatic pancreatic cancer had comparable efficacy and tolerable toxicity. This treatment may provide a considerable option for pancreatic cancer patients who desire a modified schedule. The modified regimen of 21-day nab-P/Gem is also an option worth considering during the coronavirus disease 2019 pandemic for minimizing the number of visits and limiting the risk of exposure.
Collapse
Affiliation(s)
- Chen Chang
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| | - Lingwei Meng
- Department of General Surgery, Shang Jin Hospital of West China Hospital, Sichuan University, PR China
| | - Xiaofen Li
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| | - Ke Cheng
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| | - Cheng Yi
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| | - Bing Peng
- Department of General Surgery, Shang Jin Hospital of West China Hospital, Sichuan University, PR China
| | - Ji Ma
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| | - Dan Cao
- Department of Abdominal Oncology, Cancer Center, West China Hospital, Sichuan University, PR China
| |
Collapse
|
10
|
Wang LJ, Chiou JT, Lee YC, Chang LS. Docetaxel-triggered SIDT2/NOX4/JNK/HuR signaling axis is associated with TNF-α-mediated apoptosis of cancer cells. Biochem Pharmacol 2021; 195:114865. [PMID: 34863979 DOI: 10.1016/j.bcp.2021.114865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Previous studies have confirmed that docetaxel (DTX) treatment increases TNF-α production in cancer cells, but its mechanism of action remains unclear. Therefore, this study aimed to determine the signaling axis by which DTX induced the expression of TNF-α in U937 leukemia and MCF-7 breast carcinoma cells. DTX treatment promoted Ca2+-controlled autophagy and SIDT2 expression, resulting in lysosomal degradation of miR-25 in U937 cells. Downregulation of miR-25 increased NOX4 mRNA stability and protein expression. NOX4-stimulated ROS generation led to JNK-mediated phosphorylation of cytosolic HuR at Ser221, thereby increasing TNF-α protein expression by stabilizing TNF-α mRNA. Consequently, DTX induced TNF-α-dependent death in U937 cells. Depletion of HuR using siRNA or abolishment of JNK activation reduced TNF-α expression and eliminated DTX-mediated cytotoxicity. Knockdown of SIDT2 or pretreatment with chloroquine (a lysosome inhibitor) reduced DTX-induced NOX4 and TNF-α expression and mitigated JNK-mediated HuR phosphorylation. Altogether, our data indicate that DTX triggers HuR-mediated TNF-α mRNA stabilization through the Ca2+/SIDT2/NOX4/ROS/JNK axis, thereby inducing TNF-α-dependent apoptosis in U937 cells. In addition, DTX induces apoptosis in MCF-7 cells through SIDT2/NOX4/JNK/HuR axis-mediated TNF-α expression.
Collapse
Affiliation(s)
- Liang-Jun Wang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Jing-Ting Chiou
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yuan-Chin Lee
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Long-Sen Chang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Biotechnology, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
11
|
Zawilska P, Machowska M, Wisniewski K, Grynkiewicz G, Hrynyk R, Rzepecki R, Gubernator J. Novel pegylated liposomal formulation of docetaxel with 3-n-pentadecylphenol derivative for cancer therapy. Eur J Pharm Sci 2021; 163:105838. [PMID: 33845119 DOI: 10.1016/j.ejps.2021.105838] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/05/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
The taxanes are commonly used in the treatment of many types of cancer. The disadvantages of using taxanes in therapy are their low solubility in water, the toxicity or relatively poor pharmacokinetics of existing formulations. Using liposomes as carriers would help in overcoming these problems, however, their use is limited by the low incorporation efficiency of taxane molecules within bilayer and by subsequent drug crystallization. Most of published taxanes liposomal formulations use natural soy phosphatidylcholine (PC) as main liposomes lipid. This allows a relatively good drug retention during the liposomes storage, but on the other hand, the use of liposomes with more liquid bilayer facilitates fast drug release after its intravenous administration. In order to decrease the drug release from liposomes in circulation, we used pegylated HSPC (hydrogenated soy PC) liposomes containing a novel synthetic 3-n-pentadecylphenol derivative - KW101, that showed a remarkably stabilizing action for the docetaxel (DTX) dopped HSPC liposomes over 30 days, expressed by the inhibition of DTX crystallization. The resulting liposomes with DTX showed similar cytotoxicity on MCF-7 and MDA-MB-231 breast cancer cell lines and higher toxicity in drug-resistant NCI/ADR-RES cell line in comparison with the free DTX. Moreover, this formulation has good pharmacokinetics in mice, in comparison to control pegylated DTX formulation composed of egg phosphatidylcholine (ePC). This novel liposomal formulation of docetaxel consisting of HSPC with the stabilizing compound KW101, appears to be a promising carrier for DTX cancer therapy.
Collapse
Affiliation(s)
- Patrycja Zawilska
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Magdalena Machowska
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | | | | | - Rafal Hrynyk
- 3M Poland, Aleja Katowicka 117, 05-830 Nadarzyn, Poland.
| | - Ryszard Rzepecki
- Laboratory of Nuclear Proteins, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| | - Jerzy Gubernator
- Laboratory of Lipids and Liposomes, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, 50-383 Wroclaw, Poland.
| |
Collapse
|
12
|
Combating pancreatic cancer chemoresistance by triggering multiple cell death pathways. Pancreatology 2021; 21:522-529. [PMID: 33516629 DOI: 10.1016/j.pan.2021.01.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/07/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is the fourth most common cause of cancer-associated death in western countries, where the incidence and number of deaths are increasing every year. Intrinsic or acquired resistance of tumor cells to chemotherapy agents is the major reason for failure of traditional cancer treatment. Several factors are implicated in this impressive resistance; however, of these, it is important to highlight the extensive cellular heterogeneity of these tumors. This heterogeneity is linked to a wide range of sensitivity that different clones in the same tumor display to chemotherapeutic agents. Accordingly, recent findings in this field have discovered new therapeutic targets in order to develop new combinatory treatments, as well as to induce several cell death pathways and reduce therapy-threshold and likelihood of future resistance. Accordingly, recent research has focused on targeting mitochondria, an organelle with key roles regulating cell death signaling pathways, such as apoptosis, necroptosis, autophagy, ferroptosis, or parthanatos. These findings - identifying new compounds, alone or in combination, that can target pancreatic ductal adenocarcinoma cell resistance - could be the key to future treatments.
Collapse
|
13
|
Smith ER, Xu XX. Breaking malignant nuclei as a non-mitotic mechanism of taxol/paclitaxel. JOURNAL OF CANCER BIOLOGY 2021; 2:86-93. [PMID: 35048083 PMCID: PMC8765745 DOI: 10.46439/cancerbiology.2.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Discovered in a large-scale screening of natural plant chemicals, Taxol/paclitaxel and the taxane family of compounds are surprisingly successful anti-cancer drugs, used in treatment of the majority of solid tumors, and especially suitable for metastatic and recurrent cancer. Paclitaxel is often used in combination with platinum agents and is administrated in a dose dense regimen to treat recurrent cancer. The enthusiasm and clinical development were prompted by the discovery that Taxol binds beta-tubulins specifically found within microtubules and stabilizes the filaments, and consequently inhibits mitosis. However, questions on how paclitaxel suppresses cancer persist, as other specific mitotic inhibitors are impressive in pre-clinical studies but fail to achieve significant clinical activity. Thus, additional mechanisms, such as promoting mitotic catastrophe and impacting non-mitotic targets, have been proposed and studied. A good understanding of how paclitaxel, and additional new microtubule stabilizing agents, kill cancer cells will advance the clinical application of these common chemotherapeutic agents. A recent study provides a potential non-mitotic mechanism of paclitaxel action, that paclitaxel-induced rigid microtubules act to break malleable cancer nuclei into multiple micronuclei. Previous studies have established that cancer cells have a less sturdy, more pliable nuclear envelope due to the loss or reduction of lamin A/C proteins. Such changes in nuclear structure provide a selectivity for paclitaxel to break the nuclear membrane and kill cancer cells over non-neoplastic cells that have a sturdier nuclear envelope. The formation of multiple micronuclei appears to be an important aspect of paclitaxel in the killing of cancer cells, either by a mitotic or non-mitotic mechanism. Additionally, by binding to microtubule, paclitaxel is readily sequestered and concentrated within cells. This unique pharmacokinetic property allows the impact of paclitaxel on cells to persist for several days, even though the circulating drug level is much reduced following drug administration/infusion. The retention of paclitaxel within cells likely is another factor contributing to the efficacy of the drugs. Overall, the new understanding of Taxol/paclitaxel killing mechanism-rigid microtubule-induced multiple micronucleation-will likely provide new strategies to overcome drug resistance and for rational drug combination.
Collapse
Affiliation(s)
- Elizabeth R. Smith
- Department of Obstetrics, Gynecology and Reproductive Science, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| | - Xiang-Xi Xu
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL 33136, United States
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136, United States
| |
Collapse
|
14
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
15
|
Therapeutic Zfra4-10 or WWOX7-21 Peptide Induces Complex Formation of WWOX with Selective Protein Targets in Organs that Leads to Cancer Suppression and Spleen Cytotoxic Memory Z Cell Activation In Vivo. Cancers (Basel) 2020; 12:cancers12082189. [PMID: 32764489 PMCID: PMC7464583 DOI: 10.3390/cancers12082189] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Synthetic Zfra4-10 and WWOX7-21 peptides strongly suppress cancer growth in vivo. Hypothetically, Zfra4-10 binds to the membrane Hyal-2 of spleen Z cells and activates the Hyal-2/WWOX/SMAD4 signaling for cytotoxic Z cell activation to kill cancer cells. Stimulation of membrane WWOX in the signaling complex by a WWOX epitope peptide, WWOX7-21, is likely to activate the signaling. Here, mice receiving Zfra4-10 or WWOX7-21 peptide alone exhibited an increased binding of endogenous tumor suppressor WWOX with ERK, C1qBP, NF-κB, Iba1, p21, CD133, JNK1, COX2, Oct4, and GFAP in the spleen, brain, and/or lung which led to cancer suppression. However, when in combination, Zfra4-10 and WWOX7-21 reduced the binding of WWOX with target proteins and allowed tumor growth in vivo. In addition to Zfra4-10 and WWOX7-21 peptides, stimulating the membrane Hyal-2/WWOX complex with Hyal-2 antibody and sonicated hyaluronan (HAson) induced Z cell activation for killing cancer cells in vivo and in vitro. Mechanistically, Zfra4-10 binds to membrane Hyal-2, induces dephosphorylation of WWOX at pY33 and pY61, and drives Z cell activation for the anticancer response. Thus, Zfra4-10 and WWOX7-21 peptides, HAson, and the Hyal-2 antibody are of therapeutic potential for cancer suppression.
Collapse
|
16
|
Rossignoli F, Spano C, Grisendi G, Foppiani EM, Golinelli G, Mastrolia I, Bestagno M, Candini O, Petrachi T, Recchia A, Miselli F, Rovesti G, Orsi G, Veronesi E, Medici G, Petocchi B, Pinelli M, Horwitz EM, Conte P, Dominici M. MSC-Delivered Soluble TRAIL and Paclitaxel as Novel Combinatory Treatment for Pancreatic Adenocarcinoma. Theranostics 2019; 9:436-448. [PMID: 30809285 PMCID: PMC6376176 DOI: 10.7150/thno.27576] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Accepted: 12/09/2018] [Indexed: 12/16/2022] Open
Abstract
Pancreatic cancer is the fourth leading cause of cancer death in western countries with more than 100,000 new cases per year in Europe and a mortality rate higher than 90%. In this scenario, advanced therapies based on gene therapies are emerging, thanks to a better understanding of tumour architecture and cancer cell alterations. We have demonstrated the efficacy of an innovative approach for pancreatic cancer based on mesenchymal stromal cells (MSC) genetically engineered to produce TNF-related Apoptosis Inducing Ligand (TRAIL). Here we investigated the combination of this MSC-based approach with the administration of a paclitaxel (PTX)-based chemotherapy to improve the potential of the treatment, also accounting for a possible resistance onset. Methods: Starting from the BXPC3 cell line, we generated and profiled a TRAIL-resistant model of pancreatic cancer, testing the impact of the combined treatment in vitro with specific cytotoxicity and metabolic assays. We then challenged the rationale in a subcutaneous mouse model of pancreatic cancer, assessing its effect on tumour size accounting stromal and parenchymal organization. Results: PTX was able to restore pancreatic cancer sensitivity to MSC-delivered TRAIL by reverting its pro-survival gene expression profile. The two compounds cooperate both in vitro and in vivo and the combined treatment resulted in an improved cytotoxicity on tumour cells. Conclusion: In summary, this study uncovers the potential of a combinatory approach between MSC-delivered TRAIL and PTX, supporting the combination of cell-based products and conventional chemotherapeutics as a tool to improve the efficacy of the treatments, also addressing possible mechanisms of resistance.
Collapse
|
17
|
Hickl J, Argyropoulou A, Sakavitsi ME, Halabalaki M, Al-Ahmad A, Hellwig E, Aligiannis N, Skaltsounis AL, Wittmer A, Vach K, Karygianni L. Mediterranean herb extracts inhibit microbial growth of representative oral microorganisms and biofilm formation of Streptococcus mutans. PLoS One 2018; 13:e0207574. [PMID: 30540782 PMCID: PMC6291084 DOI: 10.1371/journal.pone.0207574] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 11/02/2018] [Indexed: 11/18/2022] Open
Abstract
In light of the growing antibiotic resistance, the usage of plant-derived antimicrobial agents could serve as an effective alternative treatment against oral infections. The aim of this study was to investigate the antimicrobial and antibiofilm activity of Mediterranean herb extracts against representative oral microorganisms. The extraction procedures and the analysis of the obtained extracts were performed under established experimental conditions. The minimum inhibitory (MIC) and bactericidal (MBC) concentrations of the methanol extracts of Cistus creticus ssp. creticus, Cistus monspeliensis, Origanum vulgare, Rosmarinus officinalis, Salvia sclarea and Thymus longicaulis against eight typical oral bacteria and the fungus Candida albicans were determined. The antibiofilm activity against Streptococcus mutans was also quantified using the microtiter plate test. Overall, all tested extracts inhibited effectively the screened obligate anaerobic microorganisms and in concentrations ≥0.3 mg ml-1 had moderate to high antibiofilm activity comparable to that of chlorhexidine (CHX) against S. mutans. In particular, R. officinalis (MIC: 0.08-5.00 mg ml-1) and S. sclarea (MIC: 0.08-2.50 mg ml-1) showed the highest antibacterial activity, while Cistus spp., R. officinalis and S. sclarea significantly inhibited S. mutans biofilm formation at 0.60, 1.25 and 2.50 mg ml-1, respectively. Porphyromonas gingivalis and Parvimonas micra were high susceptible to O. vulgare (MIC = 0.30 mg ml-1), whereas T. longicaulis eradicated all oral bacteria (MBC: 0.15-2.50 mg ml-1). Nevertheless, C. albicans showed no sensitivity to the tested extracts. In conclusion, the tested plant extracts could serve as alternative natural antibacterial and antibiofilm components against oral infections.
Collapse
Affiliation(s)
- Joachim Hickl
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Aikaterini Argyropoulou
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Eleni Sakavitsi
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Halabalaki
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nektarios Aligiannis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexios Leandros Skaltsounis
- Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece
| | - Annette Wittmer
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kirstin Vach
- Institute for Medical Biometry and Statistics, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Lamprini Karygianni
- Department of Operative Dentistry and Periodontology, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Clinic for Preventive Dentistry, Periodontology and Cariology, Center of Dental Medicine University of Zurich, Zurich, Switzerland
- * E-mail:
| |
Collapse
|
18
|
Liu P, Feng J, Sun M, Yuan W, Xiao R, Xiong J, Huang X, Xiong M, Chen W, Yu X, Sun Q, Zhao X, Zhang Q, Shao L. Synergistic effects of baicalein with gemcitabine or docetaxel on the proliferation, migration and apoptosis of pancreatic cancer cells. Int J Oncol 2017; 51:1878-1886. [DOI: 10.3892/ijo.2017.4153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 09/18/2017] [Indexed: 11/06/2022] Open
|
19
|
Lemstrova R, Brynychova V, Hughes DJ, Hlavac V, Dvorak P, Doherty JE, Murray HA, Crockard M, Oliverius M, Hlavsa J, Honsova E, Mazanec J, Kala Z, Lovecek M, Havlik R, Ehrmann J, Strouhal O, Soucek P, Melichar B, Mohelnikova-Duchonova B. Dysregulation of KRAS signaling in pancreatic cancer is not associated with KRAS mutations and outcome. Oncol Lett 2017; 14:5980-5988. [PMID: 29113235 PMCID: PMC5661609 DOI: 10.3892/ol.2017.6946] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 06/21/2017] [Indexed: 12/27/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a tumor with a poor prognosis, and no targeted therapy is currently available. The aim of the present study was to investigate the prognostic significance of the expression of V-Ki-ras2 Κirsten rat sarcoma viral oncogene homolog (KRAS), downstream signaling pathway genes and the association with clinical characteristics in PDAC patients undergoing radical surgery. Tumors and adjacent non-neoplastic pancreatic tissues were examined in 45 patients with histologically verified PDAC. KRAS and B-Raf proto-oncogene, serine/threonine kinase (BRAF) gene mutation analysis was performed using the KRAS/BRAF/phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit α array. The transcript profile of 52 KRAS downstream signaling pathway genes was assessed using quantitative-polymerase chain reaction. KRAS mutation was detected in 80% of cases. The genes of four signaling pathways downstream of KRAS, including the phosphoinositide 3-kinase/3-phosphoinositide-dependent protein kinase 1/V-akt murine thymoma viral oncogene homolog 1, RAL guanine nucleotide exchange factor, Ras and Rab interactor 1/ABL proto-oncogene-1, non-receptor tyrosine kinase, and RAF proto-oncogene serine/threonine-protein kinase/mitogen-activated protein kinase pathways, exhibited differential expression in PDAC compared with that in the adjacent normal tissues. However, no significant differences in expression were evident between patients with KRAS-mutated and wild-type tumors. The expression of KRAS downstream signaling pathways genes did not correlate with angioinvasion, perineural invasion, grade or presence of lymph node metastasis. Additionally, the presence of KRAS mutations was not associated with overall survival. Among the KRAS downstream effective signaling pathways molecules investigated, only v-raf-1 murine leukemia viral oncogene homolog 1 expression was predictive of prognosis. Overall, KRAS mutation is present in the majority of cases of PDAC, but is not associated with changes in the expression of KRAS downstream signaling pathways and the clinical outcome. This may partly explain the failure of KRAS-targeted therapies in PDAC.
Collapse
Affiliation(s)
- Radmila Lemstrova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic
| | - Veronika Brynychova
- Department of Toxicogenomics, National Institute of Public Health, 100 42 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - David J Hughes
- Department of Physiology and Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin 2, Republic of Ireland
| | - Viktor Hlavac
- Department of Toxicogenomics, National Institute of Public Health, 100 42 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - Pavel Dvorak
- Department of Biology, Faculty of Medicine in Pilsen, Charles University 32300 Pilsen, Czech Republic
| | | | - Helena A Murray
- Randox Laboratories Ltd., Crumlin, BT29 4QY, Northern Ireland
| | - Martin Crockard
- Randox Laboratories Ltd., Crumlin, BT29 4QY, Northern Ireland
| | - Martin Oliverius
- Department of Transplantation Surgery, Institute of Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Jan Hlavsa
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, 625 00 Brno, Czech Republic
| | - Eva Honsova
- Department of Clinical and Transplantation Pathology, Institute of Clinical and Experimental Medicine, 140 21 Prague, Czech Republic
| | - Jan Mazanec
- Department of Pathology, University Hospital and Medical Faculty, Masaryk University, 625 00 Brno, Czech Republic
| | - Zdenek Kala
- Department of Surgery, University Hospital and Medical Faculty, Masaryk University, 625 00 Brno, Czech Republic
| | - Martin Lovecek
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic
| | - Roman Havlik
- Department of Surgery I, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic
| | - Jiri Ehrmann
- Department of Clinical and Molecular Pathology and Laboratory of Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University, 771 47 Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Ondrej Strouhal
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic
| | - Pavel Soucek
- Department of Toxicogenomics, National Institute of Public Health, 100 42 Prague, Czech Republic.,Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, 323 00 Pilsen, Czech Republic
| | - Bohuslav Melichar
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic.,Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, 779 00 Olomouc, Czech Republic
| | - Beatrice Mohelnikova-Duchonova
- Department of Oncology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital Olomouc, 771 47 Olomouc, Czech Republic.,Department of Toxicogenomics, National Institute of Public Health, 100 42 Prague, Czech Republic
| |
Collapse
|
20
|
Matrix stiffness induces epithelial-mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 2017; 6:e352. [PMID: 28671675 PMCID: PMC5541706 DOI: 10.1038/oncsis.2017.54] [Citation(s) in RCA: 349] [Impact Index Per Article: 43.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/09/2017] [Accepted: 05/24/2017] [Indexed: 02/07/2023] Open
Abstract
Increased matrix rigidity associated with the fibrotic reaction is documented to stimulate intracellular signalling pathways that promote cancer cell survival and tumour growth. Pancreatic cancer is one of the stiffest of all human solid carcinomas and is characterised by a remarkable desmoplastic reaction. Here we use mouse models, genetically engineered to recapitulate human pancreatic cancer, and several pancreatic cancer cell lines as a model to investigate the effect of matrix stiffness in epithelial-mesenchymal transition (EMT) and resistance to chemotherapeutics. We found that recapitulation of the fibrotic rigidities found in pancreatic cancer tissues promote elements of EMT, including increases in vimentin expression, decreases in E-cadherin expression, nuclear localisation of β-catenin, YAP and TAZ and changes in cell shape towards a mesenchymal phenotype. We also report that stiffness induces chemoresistance to paclitaxel, but not to gemcitabine, both commonly used therapeutics, suggesting that environmental rigidity underlies an aspect of chemoresistance.
Collapse
|
21
|
Ansari D, Sambergs F, Johansson L, Andersson R. Can protein science solve the unmet needs in pancreatic cancer diagnosis and therapy? Expert Rev Proteomics 2017; 14:469-471. [PMID: 28388239 DOI: 10.1080/14789450.2017.1314787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Ansari
- a Department of Surgery, Clinical Sciences Lund , Lund University, Skåne University Hospital , Lund , Sweden
| | - Fredrik Sambergs
- a Department of Surgery, Clinical Sciences Lund , Lund University, Skåne University Hospital , Lund , Sweden
| | - Love Johansson
- a Department of Surgery, Clinical Sciences Lund , Lund University, Skåne University Hospital , Lund , Sweden
| | - Roland Andersson
- a Department of Surgery, Clinical Sciences Lund , Lund University, Skåne University Hospital , Lund , Sweden
| |
Collapse
|