1
|
Li W, Jiang H, Chen X, Yang K, Deng X, Tang Z, Hu Z, Zhang X, Lin S, Zou Y, Wu H. The variants in PTPRB, TRAF3IP3, and DISC1 genes were associated with Graves' disease in the Chinese population. Medicine (Baltimore) 2022; 101:e31501. [PMID: 36397361 PMCID: PMC9666212 DOI: 10.1097/md.0000000000031501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Previously, a case series study was conducted on our part in which 5 patients with Graves' disease (GD) were collected from a 3-generation family to screen for susceptibility genes responsible for GD. The single nucleotide variants of Microtubule-associated protein 7 domain containing 2 c. 452C > T, p. Ala151Val, Solute carrier family 1 member 7 c. 1204C > T, p. Arg402Cys, tumor necrosis factor receptor-associated factor 3 interacting protein 3 (TRAF3IP3) c. 209A > T, p. Asn70Ile, protein tyrosine phosphatase receptor type B (PTPRB) c. 3472A > G, p. Ser1158Gly, Phosphoinositide-3-kinase regulatory subunit 3 c. 121C > T, p. Pro41Ser, disrupted in schizophrenia 1 (DISC1), c. 1591G > C p. Gly531Arg were associated with the familial GD. We then further confirmed these variants and investigated whether other mutations render susceptibility to GD. The case-control study collected patients with sporadic GD or no GD family history. A snapshot program was used for genotyping the selected SNPs in 235 GD patients (GD group 1) and 284 healthy patients (control group). Furthermore, another 184 GD patients were recruited (GD group 2) to sequence the specified exons of these genes. The sequenced data was compared with Chinese Millionome Database (CMDB). Several variants of PTPRB, phosphoinositide-3-kinase regulatory subunit 3, TRAF3IP3, and DISC1 were found in GD group 2 but not in CMDB. Moreover, the allele frequency of SNP rs2076150 (TRAF3IP3) and rs2492367 DISC1 in GD group 2 was significantly higher than that of in CMDB (all P < .05). When the control group or CMDB was set as a reference group, a significantly higher frequency in alter allele C of SNP rs186466118 PTPRB was observed in GD group 1 and GD group (constituted by GD group 1 and GD group 2). Equally importantly, there was a correlation between the allele C of SNP rs186466118 and the increased risk of GD susceptibility (all P < .05). PTPRB, TRAF3IP3, and DISC1 may be susceptibility genes for GD, and more variants of PTPRB, TRAF3IP3, and DISC1 were found in GD patients.
Collapse
Affiliation(s)
- Wei Li
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | | | - Xu Chen
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Kevin Yang
- Department of Cardiology, Sun Yat-sen University, Guangzhou, China
| | - Xindan Deng
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Zheng Tang
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhihui Hu
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xiaodan Zhang
- Department of Endocrinology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Shihan Lin
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Yuanlin Zou
- Huizhou Health Sciences Polytechnic, Huizhou, China
| | - Hui Wu
- Huizhou Health Sciences Polytechnic, Huizhou, China
- *Correspondence: Hui Wu, Clinical School, Huizhou Health Sciences Polytechnic, Huizhou, China (e-mail: )
| |
Collapse
|
2
|
Ulisse S, Baldini E, Pironi D, Gagliardi F, Tripodi D, Lauro A, Carbotta S, Tarroni D, D’Armiento M, Morrone A, Forte F, Frattaroli F, Persechino S, Odorisio T, D’Andrea V, Lori E, Sorrenti S. Is Melanoma Progression Affected by Thyroid Diseases? Int J Mol Sci 2022; 23:ijms231710036. [PMID: 36077430 PMCID: PMC9456309 DOI: 10.3390/ijms231710036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Clinical and epidemiological evidence indicate a relationship between thyroid diseases and melanoma. In particular, the hypothyroidism condition appears to promote melanoma spread, which suggests a protective role of thyroid hormones against disease progression. In addition, experimental data suggest that, in addition to thyroid hormones, other hormonal players of the hypothalamic–pituitary–thyroid (HPT) axis, namely the thyrotropin releasing hormone and the thyrotropin, are likely to affect melanoma cells behavior. This information warrants further clinical and experimental studies in order to build a precise pattern of action of the HPT hormones on melanoma cells. An improved knowledge of the involved molecular mechanism(s) could lead to a better and possibly personalized clinical management of these patients.
Collapse
Affiliation(s)
- Salvatore Ulisse
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
- Correspondence:
| | - Enke Baldini
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Daniele Pironi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Federica Gagliardi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Domenico Tripodi
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Augusto Lauro
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Sabino Carbotta
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Danilo Tarroni
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Matteo D’Armiento
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Aldo Morrone
- Scientific Direction, IRCCS San Gallicano Dermatological Institute, 00144 Rome, Italy
| | - Flavio Forte
- Urology Department, M.G. Vannini Hospital, 00177 Rome, Italy
| | - Flaminia Frattaroli
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Severino Persechino
- Department of Neurosciences, Mental Health and Sensory Organs, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Teresa Odorisio
- Laboratory of Molecular and Cell Biology, Istituto Dermopatico dell’Immacolata, IDI-IRCCS, 00167 Rome, Italy
| | - Vito D’Andrea
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Eleonora Lori
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| | - Salvatore Sorrenti
- Department of Surgical Sciences, “Sapienza” University of Rome, 00161 Rome, Italy
| |
Collapse
|
3
|
Deligiorgi MV, Trafalis DT. The continuum of care of anticancer treatment-induced hypothyroidism in patients with solid non thyroid tumors: time for an intimate collaboration between oncologists and endocrinologists. Expert Rev Clin Pharmacol 2022; 15:531-549. [PMID: 35757870 DOI: 10.1080/17512433.2022.2093714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hypothyroidism is a common adverse event of various anticancer treatment modalities, constituting a notable paradigm of the integration of the endocrine perspective into precision oncology. AREAS COVERED The present narrative review provides a comprehensive and updated overview of anticancer treatment-induced hypothyroidism in patients with solid non-thyroid tumors. A study search was conducted on the following electronic databases: PubMed, Google Scholar, Scopus.com, ClinicalTrials.gov, and European Union Clinical Trials Register from 2011 until August 2021. EXPERT OPINION In patients with solid non-thyroid tumors, hypothyroidism is a common adverse event of radiotherapy, high dose interleukin 2 (HD IL-2), interferon alpha (IFN-α), bexarotene, immune checkpoint inhibitors (ICPi), and tyrosine kinase inhibitors (TKIs), while chemotherapy may induce hypothyroidism more often than initially considered. The path forward for the management of anticancer treatment-induced hypothyroidism in patients with solid non-thyroid tumors is an integrated approach grounded on 5 pillars: prevention, vigilance, diagnosis, treatment and monitoring. Current challenges concerning anticancer treatment-induced hypothyroidism await counteraction, namely awareness of the growing list of related anticancer treatments, identification of predictive factors, counteraction of diagnostic pitfalls, tuning of thyroid hormone replacement, and elucidation of its prognostic significance. Close collaboration of oncologists with endocrinologists will provide optimal patient care.
Collapse
Affiliation(s)
- Maria V Deligiorgi
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| | - Dimitrios T Trafalis
- Department of Pharmacology - Clinical Pharmacology Unit, National and Kapodistrian University of Athens, Faculty of Medicine, Athens, Greece
| |
Collapse
|
4
|
Deligiorgi MV, Trafalis DT. The Clinical Relevance of Hypothyroidism in Patients with Solid Non-Thyroid Cancer: A Tantalizing Conundrum. J Clin Med 2022; 11:3417. [PMID: 35743483 PMCID: PMC9224934 DOI: 10.3390/jcm11123417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/08/2022] [Indexed: 02/06/2023] Open
Abstract
Hypothyroidism in patients with solid non-thyroid cancer is a tantalizing entity, integrating an intriguing thyroid hormones (THs)-cancer association with the complexity of hypothyroidism itself. The present narrative review provides a comprehensive overview of the clinical relevance of hypothyroidism in solid non-thyroid cancer. Hypothyroidism in patients with solid non-thyroid cancer is reminiscent of hypothyroidism in the general population, yet also poses distinct challenges due to the dual role of THs in cancer: promoting versus inhibitory. Close collaboration between oncologists and endocrinologists will enable the prompt and personalized diagnosis and treatment of hypothyroidism in patients with solid non-thyroid cancer. Clinical data indicate that hypothyroidism is a predictor of a decreased or increased risk of solid non-thyroid cancer and is a prognostic factor of favorable or unfavorable prognosis in solid non-thyroid cancer. However, the impact of hypothyroidism with respect to the risk and/or prognosis of solid non-thyroid cancer is not a consistent finding. To harness hypothyroidism, or THs replacement, as a personalized anticancer strategy for solid non-thyroid cancer, four prerequisites need to be fulfilled, namely: (i) deciphering the dual THs actions in cancer; (ii) identifying interventions in THs status and developing agents that block tumor-promoting THs actions and/or mimic anticancer THs actions; (iii) appropriate patient selection; and (iv) counteracting current methodological limitations.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias Str., Goudi, 11527 Athens, Greece;
| | | |
Collapse
|
5
|
Deligiorgi MV, Trafalis DT. The Intriguing Thyroid Hormones-Lung Cancer Association as Exemplification of the Thyroid Hormones-Cancer Association: Three Decades of Evolving Research. Int J Mol Sci 2021; 23:436. [PMID: 35008863 PMCID: PMC8745569 DOI: 10.3390/ijms23010436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/22/2021] [Accepted: 12/28/2021] [Indexed: 12/21/2022] Open
Abstract
Exemplifying the long-pursued thyroid hormones (TH)-cancer association, the TH-lung cancer association is a compelling, yet elusive, issue. The present narrative review provides background knowledge on the molecular aspects of TH actions, with focus on the contribution of TH to hallmarks of cancer. Then, it provides a comprehensive overview of data pertinent to the TH-lung cancer association garnered over the last three decades and identifies obstacles that need to be overcome to enable harnessing this association in the clinical setting. TH contribute to all hallmarks of cancer through integration of diverse actions, currently classified according to molecular background. Despite the increasingly recognized implication of TH in lung cancer, three pending queries need to be resolved to empower a tailored approach: (1) How to stratify patients with TH-sensitive lung tumors? (2) How is determined whether TH promote or inhibit lung cancer progression? (3) How to mimic the antitumor and/or abrogate the tumor-promoting TH actions in lung cancer? To address these queries, research should prioritize the elucidation of the crosstalk between TH signaling and oncogenic signaling implicated in lung cancer initiation and progression, and the development of efficient, safe, and feasible strategies leveraging this crosstalk in therapeutics.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Department of Pharmacology—Clinical Pharmacology Unit, Faculty of Medicine, National and Kapodistrian University of Athens, Building 16, 1st Floor, 75 Mikras Asias Str, 11527 Athens, Greece;
| | | |
Collapse
|
6
|
Davis PJ, Mousa SA, Lin HY. Nongenomic Actions of Thyroid Hormone: The Integrin Component. Physiol Rev 2020; 101:319-352. [PMID: 32584192 DOI: 10.1152/physrev.00038.2019] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The extracellular domain of plasma membrane integrin αvβ3 contains a cell surface receptor for thyroid hormone analogues. The receptor is largely expressed and activated in tumor cells and rapidly dividing endothelial cells. The principal ligand for this receptor is l-thyroxine (T4), usually regarded only as a prohormone for 3,5,3'-triiodo-l-thyronine (T3), the hormone analogue that expresses thyroid hormone in the cell nucleus via nuclear receptors that are unrelated structurally to integrin αvβ3. At the integrin receptor for thyroid hormone, T4 regulates cancer and endothelial cell division, tumor cell defense pathways (such as anti-apoptosis), and angiogenesis and supports metastasis, radioresistance, and chemoresistance. The molecular mechanisms involve signal transduction via mitogen-activated protein kinase and phosphatidylinositol 3-kinase, differential expression of multiple genes related to the listed cell processes, and regulation of activities of other cell surface proteins, such as vascular growth factor receptors. Tetraiodothyroacetic acid (tetrac) is derived from T4 and competes with binding of T4 to the integrin. In the absence of T4, tetrac and chemically modified tetrac also have anticancer effects that culminate in altered gene transcription. Tumor xenografts are arrested by unmodified and chemically modified tetrac. The receptor requires further characterization in terms of contributions to nonmalignant cells, such as platelets and phagocytes. The integrin αvβ3 receptor for thyroid hormone offers a large panel of cellular actions that are relevant to cancer biology and that may be regulated by tetrac derivatives.
Collapse
Affiliation(s)
- Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| | - Hung-Yun Lin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, New York; Department of Medicine, Albany Medical College, Albany, New York; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Taipei Cancer Center, Taipei Medical University, Taipei, Taiwan; and Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
7
|
Gabora K, Piciu A, Bădulescu IC, Larg MI, Stoian IA, Piciu D. Current evidence on thyroid related adverse events in patients treated with protein tyrosine kinase inhibitors. Drug Metab Rev 2019; 51:562-569. [PMID: 31718371 DOI: 10.1080/03602532.2019.1687512] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Tyrosine kinase inhibitors (TKI) are gaining more ground in oncology, they are widely used in the treatment of multiple types of cancers; still important side effects limit their efficacy. The aim of this study is to evaluate the existing medical literature on TKI induced thyroid dysfunction, to assess the adverse effects of targeted therapy on thyroid function in oncological patients and to evaluate the effects of thyroid dysfunction on disease prognosis. We included in this review 22 original studies published between 2010 and 2019. We used the PubMed database to search for articles upon the development of hypothyroidism and hyperthyroidism in TKI treated patients. After a careful review of the existing literature, we selected the relevant studies and cross-referenced the bibliography of each paper. A number of 1641 patients were included in our review. We found that thyroid dysfunction is not a rare side effect of TKI treatment, approximately 33% of the total number of patients presented clinical hypothyroidism. We also studied the necessity of thyroid hormone substitution treatment, a quarter of evaluated patients needed substitution therapy. Multiple studies showed that there is a link between a patient developing hypothyroidism and progression free survival. Hypothyroidism is a frequent side effect of TKI treatment, which affects the quality of life, sometimes even determines physicians to stop TKI treatment altogether. Our study underlines the necessity of TSH baseline testing and monitoring in patients treated with TKI agents.
Collapse
Affiliation(s)
- Katalin Gabora
- Department of Nuclear Medicine, Prof. Dr. Ion Chiricuță Institute of Oncology, Cluj Napoca, Romania.,Iuliu Hațieganu Univerisity of Pharmacy and Medicine, Cluj Napoca, Romania
| | - Andra Piciu
- Iuliu Hațieganu Univerisity of Pharmacy and Medicine, Cluj Napoca, Romania
| | | | - Maria Iulia Larg
- Department of Nuclear Medicine, Prof. Dr. Ion Chiricuță Institute of Oncology, Cluj Napoca, Romania.,Iuliu Hațieganu Univerisity of Pharmacy and Medicine, Cluj Napoca, Romania
| | - Ioan-Adrian Stoian
- Iuliu Hațieganu Univerisity of Pharmacy and Medicine, Cluj Napoca, Romania
| | - Doina Piciu
- Department of Nuclear Medicine, Prof. Dr. Ion Chiricuță Institute of Oncology, Cluj Napoca, Romania.,Iuliu Hațieganu Univerisity of Pharmacy and Medicine, Cluj Napoca, Romania
| |
Collapse
|
8
|
Leung AKC, Leung AAC. Evaluation and management of the child with hypothyroidism. World J Pediatr 2019; 15:124-134. [PMID: 30734891 DOI: 10.1007/s12519-019-00230-w] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/14/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Thyroid hormones are critical for early neurocognitive development as well as growth and development throughout childhood. Prompt recognition and treatment of hypothyroidism is, therefore, of utmost importance to optimize physical and neurodevelopmental outcomes. DATA SOURCES A PubMed search was completed in Clinical Queries using the key terms "hypothyroidism". RESULTS Hypothyroidism may be present at birth (congenital hypothyroidism) or develop later in life (acquired hypothyroidism). Thyroid dysgenesis and dyshormonogenesis account for approximately 85% and 15% of permanent cases of congenital primary hypothyroidism, respectively. More than 95% of infants with congenital hypothyroidism have few, if any, clinical manifestations of hypothyroidism. Newborn screening programs allow early detection of congenital hypothyroidism. In developed countries, Hashimoto thyroiditis is the most common cause of goiter and acquired hypothyroidism in children and adolescents. Globally, iodine deficiency associated with goiter is the most common cause of hypothyroidism. Central hypothyroidism is uncommon and may be associated with other congenital syndromes and deficiencies of other pituitary hormones. Familiarity of the clinical features would allow prompt diagnosis and institution of treatment. CONCLUSIONS To optimize neurocognitive outcome in infants with congenital hypothyroidism, treatment with levothyroxine should be started as soon as possible, preferably within the first 2 weeks of life. Children with acquired hypothyroidism should also be treated early to ensure normal growth and development as well as cognitive outcome. The target is to keep serum TSH < 5 mIU/L and to maintain serum free T4 or total T4 within the upper half of the age-specific reference range, with elimination of all symptoms and signs of hypothyroidism.
Collapse
Affiliation(s)
- Alexander K C Leung
- Department of Pediatrics, The University of Calgary, and The Alberta Children's Hospital, #200, 233 - 16th Avenue NW, Calgary, AB, T2M 0H5, Canada.
| | | |
Collapse
|
9
|
Lechner MG, Vyas CM, Hamnvik OPR, Alexander EK, Larsen PR, Choueiri TK, Angell TE. Risk Factors for New Hypothyroidism During Tyrosine Kinase Inhibitor Therapy in Advanced Nonthyroidal Cancer Patients. Thyroid 2018; 28:437-444. [PMID: 29652599 DOI: 10.1089/thy.2017.0579] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Thyroid dysfunction during tyrosine kinase inhibitor (TKI) cancer treatment is common, but predisposing risk factors have not been determined. Recommendations for monitoring patients treated with one or multiple TKI and in conjunction with other relevant cancer therapies could be improved. The study objective was to assess the risk factors for new thyroid dysfunction in TKI-treated previously euthyroid cancer patients. METHODS A retrospective cohort study of patients with advanced nonthyroidal cancer treated with TKI from 2000 to 2017, having available thyroid function tests showing initial euthyroid status, excluding patients with preexisting thyroid disease or lack of follow-up thyroid function tests. During TKI treatment, patients were classified as euthyroid (thyrotropin [TSH] normal), subclinical hypothyroidism (TSH 5-10 mIU/L, or higher TSH if free thyroxine normal), or overt hypothyroidism (TSH >10 mIU/L, low free thyroxine, or requiring thyroid hormone replacement). The timing of thyroid dysfunction and TKI used were assessed. Risk factors for incident hypothyroidism were evaluated using multivariate models. RESULTS In 538 adult patients included, subclinical hypothyroidism occurred in 71 (13.2%) and overt hypothyroidism occurred in 144 (26.8%) patients with TKI therapy, following a median cumulative TKI exposure of 196 days (interquartile range [IQR] 63.5-518.5 days). The odds of hypothyroidism were greatest during the first six months on a TKI. Median exposure time on the TKI concurrent with thyroid dysfunction in patients treated with only one TKI was 85 days (IQR 38-293.5 days) and was similar to the 74 days (IQR 38-133.3 days) in patients treated previously with other TKI (p = 0.41). Patients who developed hypothyroidism compared to those who remained euthyroid had greater odds of being female (odds ratio = 1.99 [confidence interval 1.35-2.93], p < 0.01), but greater cumulative TKI exposure and greater number of TKI received were not associated with thyroid dysfunction. CONCLUSIONS Thyroid dysfunction occurred in 40% of euthyroid patients. Monitoring thyroid function in TKI-treated patients is recommended, with particular attention to female patients and within the first six months of exposure to a new TKI.
Collapse
Affiliation(s)
- Melissa G Lechner
- 1 Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Chirag M Vyas
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ole-Petter R Hamnvik
- 3 Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Erik K Alexander
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - P Reed Larsen
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Toni K Choueiri
- 4 Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute , Boston, Massachusetts
| | - Trevor E Angell
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
10
|
Hercbergs A, Mousa SA, Davis PJ. Nonthyroidal Illness Syndrome and Thyroid Hormone Actions at Integrin αvβ3. J Clin Endocrinol Metab 2018; 103:1291-1295. [PMID: 29409047 DOI: 10.1210/jc.2017-01939] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 01/29/2018] [Indexed: 02/13/2023]
Abstract
CONTEXT The nonthyroidal illness syndrome (NTIS) is a constellation of changes in circulating thyroid hormone levels that occur in euthyroid patients with acute or chronic systemic diseases. The changes that occur include a reduction in serum T3, an increase in serum rT3, and variable changes in circulating T4 levels. No consensus exists regarding therapeutic intervention for NTIS. METHODS We briefly review the published literature on the physiological actions of T4 and of rT3-hormones that until recently have been seen to have little or no bioactivity-and analyze the apparent significance of changes in circulating T4 and T3 encountered in the setting of NTIS in patients with cancer. In the case of T4, these actions may be initiated at a cancer or endothelial cell plasma membrane receptor on integrin αvβ3 or at the cytoskeleton. RESULTS This review examines possible therapeutic intervention in NTIS in patients with cancer in terms of T4 reduction and T3 support. Evidence also exists that rT3 may support cancer. CONCLUSIONS Prospective study is proposed of pharmacological reduction of normal or elevated T4 in cancer-associated NTIS. We also support investigation of normally circulating levels of T3 in such patients.
Collapse
Affiliation(s)
- Aleck Hercbergs
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Shaker A Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
| | - Paul J Davis
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, New York
- Department of Medicine, Albany Medical College, Albany, New York
| |
Collapse
|
11
|
Lechner MG, Vyas CM, Hamnvik OPR, Alexander EK, Larsen PR, Choueiri TK, Angell TE. Hypothyroidism During Tyrosine Kinase Inhibitor Therapy Is Associated with Longer Survival in Patients with Advanced Nonthyroidal Cancers. Thyroid 2018; 28:445-453. [PMID: 29652597 DOI: 10.1089/thy.2017.0587] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
BACKGROUND Tyrosine kinase inhibitor (TKI)-induced thyroid dysfunction is recognized as a common adverse effect of treatment, but the importance of incident hypothyroidism during TKI therapy remains unclear. This study analyzed the prognostic significance of hypothyroidism during TKI therapy in cancer patients. METHODS This was a retrospective cohort study of adult patients with advanced nonthyroidal cancer treated with TKI and available thyroid function testing at three affiliated academic hospitals from 2000 to 2017. Patients with preexisting thyroid disease were excluded. Demographic, clinical, and cancer treatment data were collected. Thyroid status with TKI treatment was determined from thyroid function testing and initiation of thyroid medication, and classified as euthyroid (thyrotropin [TSH] normal), subclinical hypothyroidism (SCH; TSH 5-10 mIU/L, or higher TSH if free thyroxine normal), or overt hypothyroidism (OH; TSH >10 mIU/L, low free thyroxine, or requiring replacement). Multivariate models were used to evaluate the effect of TKI-related hypothyroidism on overall survival (OS). RESULTS Of 1120 initial patients, 538 remained after exclusion criteria. SCH occurred in 72 (13%) and OH in 144 (27%) patients with TKI therapy. Patients with hypothyroidism had significantly longer OS, with median OS in euthyroid patients of 685 days [confidence interval (CI) 523-851] compared to 1005 days [CI 634-1528] in SCH and 1643 days [CI 1215-1991] in OH patients (p < 0.0001). After adjustment for age, sex, race/ethnicity, cancer type, cancer stage, ECOG performance status, and checkpoint inhibitor therapy, OH remained significantly associated with OS (hazard ratio = 0.561; p < 0.0001), whereas SCH did not (hazard ratio = 0.796; p = 0.165). Analysis of hypothyroid patients (SCH and OH) with TSH >5 and <10 mIU/L stratified by hormone replacement status showed improved survival associated with hormone replacement. CONCLUSIONS New hypothyroidism in cancer patients treated with TKI is associated with significantly improved OS, should not necessitate TKI dose reduction or discontinuation, and may provide independent prognostic information.
Collapse
Affiliation(s)
- Melissa G Lechner
- 1 Department of Medicine, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Chirag M Vyas
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Ole-Petter R Hamnvik
- 3 Division of Endocrinology, Diabetes, and Hypertension, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Erik K Alexander
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - P Reed Larsen
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| | - Toni K Choueiri
- 4 Lank Center for Genitourinary Oncology, Dana Farber Cancer Institute , Boston, Massachusetts
| | - Trevor E Angell
- 2 Thyroid Section, Brigham and Women's Hospital and Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
12
|
Bilen MA, Carlisle JW, Sonpavde G. The prospects for combination therapy with capecitabine in the rapidly evolving treatment landscape of renal cell carcinoma. Expert Opin Investig Drugs 2018; 27:163-170. [PMID: 29323560 DOI: 10.1080/13543784.2018.1427731] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Although significant advances have been made in the treatment of advanced renal cell carcinoma (RCC), patients still develop resistance to standard therapies and require the administration of subsequent lines of treatment. New therapeutic approaches are thus imperative to improve the prognosis for patients with RCC. AREAS COVERED Based on the current literature, we summarize the treatment of metastatic RCC, including the use of cytotoxic chemotherapy, in this review article. We also review the existing scientific literature regarding the role of capecitabine in the treatment of RCC. EXPERT OPINION Currently, targeted therapies including vascular endothelial growth factor (VEGF) and mammalian target of rapamycin (mTOR) inhibitors are widely used in the treatment of metastatic RCC. More recently, the role of immune checkpoint inhibitors has been established in the treatment of advanced RCC. Traditionally, the use of cytotoxic chemotherapy in the treatment of RCC is limited. However, cytotoxic chemotherapy may have benefit in different types of RCC, such as variant histology. Furthermore, new combinations of chemotherapy with immune checkpoint inhibitors may provide new treatment options for our patients.
Collapse
Affiliation(s)
- Mehmet Asim Bilen
- a Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Jennifer W Carlisle
- a Department of Hematology and Medical Oncology , Winship Cancer Institute of Emory University , Atlanta , GA , USA
| | - Guru Sonpavde
- b Department of Medicine, Division of Hematology and Oncology , University of Alabama at Birmingham Comprehensive Cancer Center , Birmingham , AL , USA
| |
Collapse
|
13
|
Chang ST, Menias CO, Lubner MG, Mellnick VM, Hara AK, Desser TS. Molecular and Clinical Approach to Intra-abdominal Adverse Effects of Targeted Cancer Therapies. Radiographics 2017; 37:1461-1482. [PMID: 28753381 DOI: 10.1148/rg.2017160162] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Targeted cancer therapies encompass an exponentially growing number of agents that involve a myriad of molecular pathways. To excel within this rapidly changing field of clinical oncology, radiologists must eschew traditional organ system-based approaches of cataloging adverse effects in favor of a conceptual framework that incorporates molecular mechanisms and associated clinical outcomes. Understanding molecular mechanisms that underlie imaging manifestations of adverse effects and known associations with treatment response allows radiologists to more effectively recognize adverse effects and differentiate them from tumor progression. Radiologists can therefore more effectively guide oncologists in the management of adverse effects and treatment decisions regarding continuation or cessation of drug therapy. Adverse effects from targeted cancer therapies can be classified into four categories: (a) category 1, on-target adverse effects associated with treatment response; (b) category 2, on-target adverse effects without associated treatment response; (c) category 3, off-target adverse effects; and (d) category 4, tumor necrosis-related adverse effects. This review focuses on adverse effects primarily within the abdomen and pelvis classified according to established or hypothesized molecular mechanisms and illustrated with images of classic examples and several potential emerging toxic effects. ©RSNA, 2017.
Collapse
Affiliation(s)
- Stephanie T Chang
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| | - Christine O Menias
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| | - Meghan G Lubner
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| | - Vincent M Mellnick
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| | - Amy K Hara
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| | - Terry S Desser
- From the Department of Radiology, VA Palo Alto Health Care System, Palo Alto, Calif (S.T.C.); Department of Radiology, Stanford University School of Medicine, 300 Pasteur Dr, H1307 MC 5621, Stanford, CA 94305 (S.T.C., T.S.D.); Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M., A.K.H.); Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wis (M.G.L.); and Mallinckrodt Institute of Radiology, Washington University School of Medicine, St Louis, Mo (V.M.M.)
| |
Collapse
|