1
|
Hu F, Ye Y, Begum H. Chemotherapy regimen for recurrent uterine leiomyosarcoma. J Oncol Pharm Pract 2024; 30:400-403. [PMID: 37787402 DOI: 10.1177/10781552231205203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
INTRODUCTION Uterine leiomyosarcoma is a rare gynecological malignancy, the limited literature indicated that doxorubicin alone or gemcitabine/docetaxel combination is the preferred chemotherapy regimen. Given the rarity of the disease and the lack of high-level clinical evidence, there is no consensus on the best treatment. CASE REPORT We report a case of a patient with uterine leiomyosarcoma who recurred after adjustment treatment with doxorubicin, gemcitabine, docetaxel, and anlotinib; and required a new chemotherapy regimen. MANAGEMENT AND OUTCOMES The follow-up chemotherapy regimen was doxorubicin-liposome 40 mg/m2 on one day in combination with dacarbazine 250 mg/m2 on one to five days of intravenous infusion every 21 days. We monitored adverse effects during chemotherapy and the process was smooth. DISCUSSION It is important to comprehensively consider the patient's condition, and fully consider the efficacy, dosage, and adverse reactions of the chemotherapy regimen to determine the appropriate plan, in order to achieve the best therapeutic benefits for patients.
Collapse
Affiliation(s)
- Fang Hu
- First People's Hospital of Tianshui, Tianshui City, Gansu Province, China
| | - Yiqing Ye
- Women's Hospital School of Medicine Zhejiang University, Hangzhou City, Zhejiang Province, China
| | - Hazeera Begum
- Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, China
| |
Collapse
|
2
|
Myat YY, Sahatsapan N, Rojanarata T, Ngawhirunpat T, Opanasopit P, Pornpitchanarong C, Patrojanasophon P. Antibody-decorated chitosan-iodoacetamide-coated nanocarriers for the potential delivery of doxorubicin to breast cancer cells. Int J Biol Macromol 2024; 258:128797. [PMID: 38104687 DOI: 10.1016/j.ijbiomac.2023.128797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
Using an active targeting approach of chemotherapeutics-loaded nanocarriers (NCs) with monoclonal antibodies is a potential strategy to improve the specificity of the delivery systems and reduce adverse reactions of chemotherapeutic drugs. Specific targeting of the human epidermal growth factor receptor-2 (HER-2), expressed excessively in HER-2-positive breast cancer cells, can be achieved by conjugating NCs with an anti-HER-2 monoclonal antibody. We constructed trastuzumab-conjugated chitosan iodoacetamide-coated NCs containing doxorubicin (Tras-Dox-CHI-IA-NCs) as a tumor-targeted drug delivery system, during the study. Chitosan-iodoacetamide (CHI-IA) was synthesized and utilized to prepare trastuzumab-conjugated NCs (Tras-NCs). The morphology, physicochemical properties, drug loading, drug release, and biological activities of the NCs were elucidated. The Tras-NCs were spherical, with a particle size of approximately 76 nm, and had a positive zeta potential; after incorporating the drug, the size of the Tras-NC increased. A prolonged, 24-h drug release from the NCs was achieved. The Tras-NCs exhibited high cellular accumulation and significantly higher antitumor activity against HER-2-positive breast cancer cells than the unconjugated NCs and the drug solution. Therefore, Tras-Dox-CHI-IA-NCs could be a promising nanocarrier for HER-2-positive breast cancer.
Collapse
Affiliation(s)
- Yin Yin Myat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Nitjawan Sahatsapan
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 160 00, Czech Republic
| | - Theerasak Rojanarata
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Tanasait Ngawhirunpat
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Praneet Opanasopit
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Chaiyakarn Pornpitchanarong
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
| | - Prasopchai Patrojanasophon
- Pharmaceutical Development of Green Innovations Group (PDGIG), Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand.
| |
Collapse
|
3
|
Jiang Y, Jiang Y, Li M, Yu Q. Will nanomedicine become a good solution for the cardiotoxicity of chemotherapy drugs? Front Pharmacol 2023; 14:1143361. [PMID: 37214453 PMCID: PMC10194942 DOI: 10.3389/fphar.2023.1143361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/12/2023] [Indexed: 05/24/2023] Open
Abstract
Cancer is one of the leading causes of death worldwide, and with the continuous development of life sciences and pharmaceutical technology, more and more antitumor drugs are being used in clinics to benefit cancer patients. However, the incidence of chemotherapy-induced cardiotoxicity has been continuously increasing, threatening patients' long-term survival. Cardio-oncology has become a research hot spot, and the combination of nanotechnology and biomedicine has brought about an unprecedented technological revolution. Nanomaterials have the potential to maximize the efficacy and reduce the side effects of chemotherapeutic drugs when used as their carriers, and several nano-formulations of frequently used chemotherapeutic drugs have already been approved for marketing. In this review, we summarize chemotherapeutic drugs that are highly associated with cardiotoxicity and evaluate the role of nano-delivery systems in reducing cardiotoxicity based on studies of their marketed or R&D nano-formulations. Some of the marketed chemotherapy drugs are combined with nano-delivery systems that can effectively deliver chemotherapy drugs to tumors and cannot easily penetrate the endothelial barrier of the heart, thus decreasing their distribution in the heart and reducing the cardiotoxicity to some extent. However, many chemotherapy nanomedicines that are marketed or in R&D have not received enough attention in determining their cardiotoxicity. In general, nanomedicine is an effective method to reduce the cardiotoxicity of traditional chemotherapy drugs. However, cardiovascular complications in cancer treatment are very complex diseases, requiring the application of multiple measures to achieve effective management and prevention.
Collapse
Affiliation(s)
- Yichuan Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yueyao Jiang
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Min Li
- Pharmacological Experiment Center, School of Pharmaceutical Sciences, Jilin University, Changchun, China
| | - Qian Yu
- Department of Pharmacy, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Anderson PM, Subbiah V, Trucco MM. Current and future targeted alpha particle therapies for osteosarcoma: Radium-223, actinium-225, and thorium-227. Front Med (Lausanne) 2022; 9:1030094. [PMID: 36457575 PMCID: PMC9705365 DOI: 10.3389/fmed.2022.1030094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 07/30/2023] Open
Abstract
Osteosarcoma is a high-grade sarcoma characterized by osteoid formation, nearly universal expression of IGF1R and with a subset expressing HER-2. These qualities provide opportunities for the use of the alpha particle-emitting isotopes to provide targeted radiation therapy via alpha particles precisely to bone-forming tumors in addition to IFG1R or Her-2 expressing metastases. This review will detail experience using the alpha emitter radium-223 (223Ra, tradename Xofigo), that targets bone formation, in osteosarcoma, specifically related to patient selection, use of gemcitabine for radio-sensitization, and using denosumab to increasing the osteoblastic phenotype of these cancers. A case of an inoperable left upper lobe vertebral-paraspinal-mediastinal osteoblastic lesion treated successfully with 223Ra combined with gemcitabine is described. Because not all areas of osteosarcoma lesions are osteoblastic, but nearly all osteosarcoma cells overexpress IGF1R, and some subsets expressing Her-2, the anti-IGF1R antibody FPI-1434 linked to actinium-225 (225Ac) or the Her-2 antibody linked to thorium-227 (227Th) may become other means to provide targeted alpha particle therapy against osteosarcoma (NCT03746431 and NCT04147819).
Collapse
Affiliation(s)
- Peter M. Anderson
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| | - Vivek Subbiah
- Investigational Cancer Therapeutics, Cancer Medicine, Clinical Center for Targeted Therapy, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Matteo M. Trucco
- Department of Pediatric Hematology, Oncology and Bone Marrow Transplant, Cleveland Clinic Children’s Hospital, Pediatric Institute, Cleveland Clinic, Cleveland, OH, United States
| |
Collapse
|
5
|
Su X, Zhang X, Liu W, Yang X, An N, Yang F, Sun J, Xing Y, Shang H. Advances in the application of nanotechnology in reducing cardiotoxicity induced by cancer chemotherapy. Semin Cancer Biol 2021; 86:929-942. [PMID: 34375726 DOI: 10.1016/j.semcancer.2021.08.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023]
Abstract
Advances in the development of anti-tumour drugs and related technologies have resulted in a significant increase in the number of cancer survivors. However, the incidence of chemotherapy-induced cardiotoxicity (CIC) has been rising continuously, threatening their long-term survival. The integration of nanotechnology and biomedicine has brought about an unprecedented technological revolution and has promoted the progress of anti-tumour therapy. In this review, we summarised the possible mechanisms of CIC, evaluated the role of nanoparticles (including liposomes, polymeric micelles, dendrimers, and hydrogels) as drug carriers in preventing cardiotoxicity and proposed five advantages of nanotechnology in reducing cardiotoxicity: Liposomes cannot easily penetrate the heart's endothelial barrier; optimized delivery strategies reduce distribution in important organs, such as the heart; targeting the tumour microenvironment and niche; stimulus-responsive polymer nano-drug carriers rapidly iterate; better economic benefits were obtained. Nanoparticles can effectively deliver chemotherapeutic drugs to tumour tissues, while reducing the toxicity to heart tissues, and break through the dilemma of existing chemotherapy to a certain extent. It is important to explore the interactions between the physicochemical properties of nanoparticles and optimize the highly specific tumour targeting strategy in the future.
Collapse
Affiliation(s)
- Xin Su
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Wenjing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyu Yang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Fan Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiahao Sun
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yanwei Xing
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China; College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China.
| |
Collapse
|
6
|
Elamir A, Ajith S, Sawaftah NA, Abuwatfa W, Mukhopadhyay D, Paul V, Al-Sayah MH, Awad N, Husseini GA. Ultrasound-triggered herceptin liposomes for breast cancer therapy. Sci Rep 2021; 11:7545. [PMID: 33824356 PMCID: PMC8024284 DOI: 10.1038/s41598-021-86860-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/22/2021] [Indexed: 02/01/2023] Open
Abstract
The functionalization of liposomes with monoclonal antibodies is a potential strategy to increase the specificity of liposomes and reduce the side-effects associated with chemotherapeutic agents. The active targeting of the Human Epidermal growth factor Receptor 2 (HER2), which is overexpressed in HER2 positive breast cancer cells, can be achieved by coating liposomes with an anti-HER2 monoclonal antibody. In this study, we synthesized calcein and Doxorubicin-loaded immunoliposomes functionalized with the monoclonal antibody Trastuzumab (TRA). Both liposomes were characterized for their size, phospholipid content and antibody conjugation. Exposing the liposomes to low-frequency ultrasound (LFUS) triggered drug release which increased with the increase in power density. Trastuzumab conjugation resulted in enhancing the sensitivity of the liposomes to LFUS. Compared to the control liposomes, TRA-liposomes showed higher cellular toxicity and higher drug uptake by the HER2 + cell line (SKBR3) which was further improved following sonication with LFUS. Combining immunoliposomes with LFUS is a promising technique in the field of targeted drug delivery that can enhance efficiency and reduce the cytotoxicity of antineoplastic drugs.
Collapse
Affiliation(s)
- Amal Elamir
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Saniha Ajith
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Nour Al Sawaftah
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Waad Abuwatfa
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Debasmita Mukhopadhyay
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Vinod Paul
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Mohammad H. Al-Sayah
- grid.411365.40000 0001 2218 0143Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, PO. Box 26666, Sharjah, UAE
| | - Nahid Awad
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| | - Ghaleb A. Husseini
- grid.411365.40000 0001 2218 0143Department of Chemical Engineering, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
7
|
Li XR, Zhu Y, Zhang GN, Huang JM, Pei LX. The impact of Pegylated liposomal doxorubicin in recurrent ovarian cancer: an updated meta-analysis of randomized clinical trials. J Ovarian Res 2021; 14:42. [PMID: 33750444 PMCID: PMC7945320 DOI: 10.1186/s13048-021-00790-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/04/2022] Open
Abstract
Background Previous meta-analysis studies suggested that pegylated liposomal doxorubicin (PLD) may improve the survival rate of patients with recurrent ovarian cancer. The aim of the present meta-analysis, then, was to further update the role of PLD in the treatment of recurrent ovarian cancer. Methods We performed a literature search using the electronic databases Medicine, EMBASE, Web of Science, and the Cochrane Library to 27 July 2020. We only restricted the randomized clinical trials. Study-specific hazard ratios and 95% confidence interval (HR/95% CI) and risk ratios and 95% confidence interval (RR/95% CI) were pooled using a random-effects model. Results Ten studies (12 trials) were included after screening 940 articles. We categorized the eligible studies into two groups: the doublet regimens (four trials, 1767 patients) showed that PLD plus carbo provided superior progression-free survival (PFS) (HR, 0.85; 95% CI, 0.74–0.97) and similar overall survival (OS) (HR, 1.00; 95% CI, 0.88–1.14) compared to paclitaxel (PAC) plus carboplatin (carbo). PLD plus carbo was associated with significantly more anemia and thrombocytopenia, and other side effects were well tolerated. The monotherapy regimens (eight trials, 1980 patients) showed that PLD possessed a similar PFS (HR, 1.02; 95% CI, 0.90–1.16) and OS (HR, 0.88; 95% CI, 0.77–1.01) relative to other monotherapies. PLD alone was also more associated with mucositis/stomatitis and hand-foot syndrome, while other side effects were well tolerated. Conclusions In platinum-sensitive recurrent ovarian cancer, PLD plus carbo was more effective than PAC plus carbo, while in platinum-resistant or -refractory recurrent ovarian cancer, PLD exhibited similar survival to other monotherapies. Regarding side effects, PLD plus carbo and mono chemotherapy were both well tolerated. Supplementary Information The online version contains supplementary material available at 10.1186/s13048-021-00790-4.
Collapse
Affiliation(s)
- Xin-Ru Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, People's Republic of China
| | - Yi Zhu
- Department of Ultrasound, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Guo-Nan Zhang
- Department of Gynecological Oncology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, No.55 Ren-min-nan Road, Chengdu, 610041, Sichuan Province, People's Republic of China. .,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No.37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China.
| | - Jian-Ming Huang
- Department of Biochemistry & Molecular Biology, the Affiliated Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Sichuan Cancer Hospital & Institute, Chengdu, 610041, Sichuan Province, People's Republic of China
| | - Li-Xia Pei
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan Province, People's Republic of China.,School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, No.37 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, People's Republic of China
| |
Collapse
|
8
|
Pérez-López A, Martín-Sabroso C, Torres-Suárez AI, Aparicio-Blanco J. Timeline of Translational Formulation Technologies for Cancer Therapy: Successes, Failures, and Lessons Learned Therefrom. Pharmaceutics 2020; 12:E1028. [PMID: 33126622 PMCID: PMC7692572 DOI: 10.3390/pharmaceutics12111028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/21/2020] [Accepted: 10/26/2020] [Indexed: 02/07/2023] Open
Abstract
Over the past few decades, the field of cancer therapy has seen a significant change in the way in which formulations are designed and developed, resulting in more efficient products that allow us to ultimately achieve improved drug bioavailability, efficacy, and safety. However, although many formulations have entered the market, many others have fallen by the wayside leaving the scientific community with several lessons to learn. The successes (and failures) achieved with formulations that have been approved in Europe and/or by the FDA for the three major types of cancer therapy (peptide-based therapy, chemotherapy, and radiotherapy) are reviewed herein, covering the period from the approval of the first prolonged-release system for hormonal therapy to the appearance of the first biodegradable microspheres intended for chemoembolization in 2020. In addition, those products that have entered phase III clinical trials that have been active over the last five years are summarized in order to outline future research trends and possibilities that lie ahead to develop clinically translatable formulations for cancer treatment.
Collapse
Affiliation(s)
- Alexandre Pérez-López
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
| | - Cristina Martín-Sabroso
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Ana Isabel Torres-Suárez
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| | - Juan Aparicio-Blanco
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain; (A.P.-L.); (C.M.-S.); (J.A.-B.)
- Institute of Industrial Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
| |
Collapse
|
9
|
Chambers LM, Pendlebury A, Rose PG, Yao M, DeBernardo R. Efficacy and toxicity of prolonged pegylated liposomal doxorubicin use in women with recurrent epithelial ovarian cancer. Gynecol Oncol 2020; 158:309-315. [PMID: 32499072 DOI: 10.1016/j.ygyno.2020.04.708] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 04/26/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To evaluate the efficacy and toxicity of extended duration pegylated liposomal doxorubicin (PLD) in women with recurrent epithelial ovarian carcinoma (rEOC). METHODS Women with rEOC who received >7 cycles of PLD were retrospectively identified. Response was determined by RECIST 1.1. Progression free survival (PFS) and overall survival (OS) were calculated from PLD initiation. Toxicity was assessed by CTCAE v5.0. Kaplan Meier estimates and Cox proportional hazards were used to evaluate differences in time to recurrence or survival. RESULTS 69 patients with rEOC received a median of 11.0 cycles (range, 7-115) at a median cumulative dose of 400 mg/m2 (range, 210-4600 mg/m2); 29.0% (n = 20) had platinum sensitive and 71.0% (n = 49) had platinum resistant disease. Of the observed grade ¾ toxicities (31.9%; n = 22), dermatologic were most frequent (n = 13; 18.8%). 41 women (59.4%) experienced clinical benefit; complete response in 17.4% (n = 12), partial response in 13.0% (n = 9) and stable disease in 29.0% (n = 20). Median PFS for all patients was 13.0 months (95% CI, 10.7, 15.2); there were no significant differences between platinum sensitive versus resistant disease (15.9 months vs. 12.3 months; HR 1.15, 95% CI, 0.66, 2.00; p = .61). With extended duration PLD, median OS was 40.2 months (95% CI 30.0, 49.0); no significant differences were noted for platinum sensitive versus resistant disease (44.7 months vs. 33.3 months; HR 1.85, 95% CI, 0.91, 3.78; p = .07). Four cases (5.8%) of oral squamous cell carcinoma occurred during treatment. CONCLUSIONS Among women with both platinum sensitive and resistant rEOC who received >7 cycles of PLD, approximately one-half experienced sustained clinical benefit with acceptable toxicity. PLD may be considered for extended usage and maintenance in initially responding women with rEOC at least stable disease.
Collapse
Affiliation(s)
- Laura M Chambers
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America.
| | - Adam Pendlebury
- Department of Gynecological Oncology, Mercy Hospital for Women, 163 Studley Road, Heidelberg, Victoria 3058, Australia
| | - Peter G Rose
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| | - Meng Yao
- Quantitative Health Sciences, Cleveland Clinic, JJ Building, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| | - Robert DeBernardo
- Division of Gynecologic Oncology, Obstetrics, Gynecology and Women's Health Institute, Cleveland Clinic, Desk A81, 9500 Euclid Avenue, Cleveland, OH 44195, United States of America
| |
Collapse
|
10
|
Esnaashari SS, Muhammadnejad S, Amanpour S, Amani A. A Combinational Approach Towards Treatment of Breast Cancer: an Analysis of Noscapine-Loaded Polymeric Nanoparticles and Doxorubicin. AAPS PharmSciTech 2020; 21:166. [PMID: 32504144 DOI: 10.1208/s12249-020-01710-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 05/13/2020] [Indexed: 01/10/2023] Open
Abstract
Our aim in this study was to clarify the combination anticancer effect of Noscapine (Nos) loaded in a polymeric nanocarrier with Doxorubicin (Dox) on breast cancer cells. Nanoprecipitation method was used to prepare methoxy polyethylene glycol (mPEG), poly lactic-co-glycolic acid (PLGA) nanoparticles (NPs) containing Nos. Transmission electron microscopy (TEM) and dynamic light scattering (DLS) were used to characterize the prepared Nos NPs. The anticancer activity of Nos NPs alone and in combination with Dox was assessed on 4T1 breast cancer cell line and in mice model. Spherical-shaped Nos NPs were prepared, with size of 101 ± 4.80 nm and zeta potential of - 15.40 ± 1 mV. Fourier transform infrared (FTIR) spectroscopy results demonstrated that Nos chemical structure was kept stable during preparation process. However, differential scanning calorimetric (DSC) thermogram proved that crystalline state of Nos changed to amorphous state in Nos NPs. The entrapment efficacy % (EE%) and drug loading % (DL%) of Nos NPs were about 87.20 ± 3.50% and 12.50 ± 2.30%, respectively. Synergistic anticancer effects of Nos both in free form (in hydrochloride form, Nos HCl) and Nos NPs form with Dox hydrochloride (Dox HCl) were observed on 4T1 cells. Combination of Nos NPs and Dox HCl inhibited tumor growth (68.50%) in mice more efficiently than Nos NPs (55.10%) and Dox HCl (32%) alone. Immunohistochemical (IHC) analysis of the tumor tissues confirmed antiangiogenic effect of Nos NPs. The findings highlighted efficacy of Nos NPs alone and in combination with Dox HCl on breast cancer tumors.
Collapse
|
11
|
Anderson PM. Radiopharmaceuticals for Treatment of Osteosarcoma. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1257:45-53. [PMID: 32483729 DOI: 10.1007/978-3-030-43032-0_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although trace amounts of radioactivity are routinely used to detect osteosarcoma, the use of larger therapeutic amounts of radiation is often an unrecognized opportunity to treat metastatic osteosarcoma. This chapter will review a number of approaches to use ionizing radiation in the form of injectable radiopharmaceuticals. Since bone metastases are a common pattern of metastatic spread of cancer in general, a number of bone-seeking radiopharmaceuticals have been developed and FDA approved for treatment of bone metastases. Although osteosarcoma, a bone-forming cancer, would seem ideally suited to be treated with bone seekers, patterns of relapse involving non-ossifying metastases remain a major problem to be overcome. Thus, this review will not only describe experience using a number of bone-seeking radiopharmaceuticals such as 153-samarium-EDTMP, 153-samarium-DOTMP, and 223-radium against osteosarcoma, but also approaches to identify patients who may benefit as well as some means to the improve overall efficacy including combination therapy with routine agents and using nuclear imaging to develop best strategy for use. These include imaging with not only 99mTc-MDP standard bone scans, but also 99mTc-MDP bone scans with SPECT CT, bone-specific sodium fluoride PET-CT (Na18F), and 18FDG-PET-CT. Accurate knowledge of oligometastatic active disease can facilitate more effective use of combination therapy, including radiosensitizers and local control measures, for example, stereotactic body radiotherapy (SBRT) and/or cryoablation to reduce disease burden as well as manage and prevent micrometastatic disease from growing and metastasizing. Finally, a new tumor-specific radiopharmaceutical, CLR 131, may also provide another radiopharmaceutical to treat both osteoblastic and non-ossifying areas of osteosarcoma.
Collapse
Affiliation(s)
- Peter M Anderson
- Pediatric and Taussig Cancer Institutes, Department of Pediatric Hematology, Oncology and BMT, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
12
|
Kubeček O, Martínková J, Chládek J, Bláha M, Maláková J, Hodek M, Špaček J, Filip S. Plasmafiltration as an effective method in the removal of circulating pegylated liposomal doxorubicin (PLD) and the reduction of mucocutaneous toxicity during the treatment of advanced platinum-resistant ovarian cancer. Cancer Chemother Pharmacol 2019; 85:353-365. [PMID: 31728628 DOI: 10.1007/s00280-019-03976-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 10/05/2019] [Indexed: 12/31/2022]
Abstract
PURPOSE The present study evaluates the safety and efficacy of double-plasma filtration (PF) to remove the exceeding pegylated liposomal doxorubicin (PLD) in circulation, thus reducing mucocutaneous toxicity. METHODS A total of 16 patients with platinum-resistant ovarian cancer were treated with 50 mg/m2 PLD applied in 1-h IV infusion every 28 days. PF was scheduled at 44-46 h post-infusion. The concentration of plasma PLD and non-liposomal doxorubicin (NLD) was monitored with high-performance liquid chromatography at 116 h post-infusion. A non-linear method for mixed-effects was used in the population pharmacokinetic model. The dose fraction of PLD eliminated by the patient prior to PF was compared with the fraction removed by PF. PLD-related toxicity was recorded according to CTCAE v4.0 criteria and compared to historical data. Anticancer effects were evaluated according to RECIST 1.1 criteria. RESULTS The patients received a median of 3 (2-6) chemotherapy cycles. A total of 53 cycles with PF were evaluated, which removed 31% (10) of the dose; on the other hand, the fraction eliminated prior to PF was of 34% (7). Exposure to NLD reached only 10% of exposure to the parent PLD. PLD-related toxicity was low, finding only one case of grade 3 hand-foot syndrome (6.7%) and grade 1 mucositis (6.7%). Other adverse effects were also mild (grade 1-2). PF-related adverse effects were low (7%). Median progression-free survival (PFS) and overall survival (OS) was of 3.6 (1.5-8.1) and 7.5 (1.7-26.7) months, respectively. Furthermore, 33% of the patients achieved stable disease (SD), whereas that 67% progressed. CONCLUSION PF can be considered as safe and effective for the extracorporeal removal of PLD, resulting in a lower incidence of mucocutaneous toxicity.
Collapse
Affiliation(s)
- Ondřej Kubeček
- Department of Oncology and Radiotherapy, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Jiřina Martínková
- Department of Surgery, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Jaroslav Chládek
- Department of Pharmacology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 50003, Hradec Králové, Czech Republic
| | - Milan Bláha
- 4th Department of Internal Medicine-Hematology, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Jana Maláková
- Institute of Clinical Biochemistry and Diagnostics, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Miroslav Hodek
- Department of Oncology and Radiotherapy, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Jiří Špaček
- Department of Obstetrics and Gynecology, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic
| | - Stanislav Filip
- Department of Oncology and Radiotherapy, Faculty of Medicine, University Hospital in Hradec Králové, Charles University, Sokolská 581, 50005, Hradec Králové, Czech Republic.
| |
Collapse
|
13
|
Dioun SM, Vilardo N, Goldberg GL, Gressel GM. Necessity of routine cardiac evaluation in patients receiving pegylated liposomal doxorubicin for gynecologic cancer. Gynecol Oncol 2019; 155:301-304. [PMID: 31575390 DOI: 10.1016/j.ygyno.2019.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Pegylated liposomal doxorubicin (PLD) has similar reported clinical efficacy compared with conventional doxorubicin with less cardiotoxicity. The manufacturer of PLD advises that cardiac function should be evaluated with endomyocardial biopsy, echocardiography or multigated radionucleotide scan (MUGA) pre-treatment and during therapy. This study was designed to assess the necessity of pre-treatment cardiac evaluation in patients receiving PLD. METHODS After IRB approval, a retrospective study of all women with gynecologic cancer who received PLD from 2006 to 2018 was performed. Demographic information, treatment records, cardiac risk factors, and cardiac surveillance testing were examined. Wilcoxon signed rank sum test and logistic regression were used to evaluate the association of cumulative PLD exposure with cardiotoxicity. RESULTS A total of 235 patients received PLD for gynecologic cancer. Patients received a median of 3 cycles of PLD with a cumulative dosage of 237 mg over a median follow-up time of 24 months. Sixteen patients in the cohort (7%) had no cardiac surveillance at all. Of the remaining patients who underwent cardiac testing, 183 (84%) received MUGA scans and 36 (16%) had echocardiography. Of the 56 patients who had both pre- and post-treatment cardiac testing, there was no significant difference in median ejection fraction (p = 0.17). Three patients developed PLD-associated cardiac toxicity but only one patient had severe manifestations requiring discontinuation of PLD therapy. CONCLUSIONS Routine cardiac testing before, during or after treatment with PLD may be unnecessary. Cardiac testing may be more appropriate for individual patients for whom the clinical suspicion of PLD-related cardiac toxicity is high.
Collapse
Affiliation(s)
- Shayan M Dioun
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
| | - Nicole Vilardo
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America
| | - Gary L Goldberg
- Department of Obstetrics & Gynecology, Zucker School of Medicine at Hofstra/Northwell, New Hyde Park, NY, United States of America
| | - Gregory M Gressel
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology and Women's Health, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States of America; Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, United States of America.
| |
Collapse
|
14
|
Findlay SG, Gill JH, Plummer R, DeSantis C, Plummer C. Chronic cardiovascular toxicity in the older oncology patient population. J Geriatr Oncol 2019; 10:685-689. [DOI: 10.1016/j.jgo.2019.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Accepted: 01/24/2019] [Indexed: 12/28/2022]
|
15
|
Yost S, Konal J, Hoekstra A. Prolonged use of pegylated liposomal doxorubicin in gynecologic malignancies. Gynecol Oncol Rep 2019; 29:89-93. [PMID: 31467958 PMCID: PMC6710555 DOI: 10.1016/j.gore.2019.07.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/21/2019] [Accepted: 07/27/2019] [Indexed: 11/30/2022] Open
Abstract
Pegylated liposomal doxorubicin (PLD) is a palliative treatment option for patients with recurrent gynecologic malignancies. It has an appealing toxicity profile and responses can be prolonged. There is no consensus as to the level of cardiac toxicity. Current label warnings, National Comprehensive Cancer Network (NCCN) guidelines, and extrapolation of prescribing guidelines from doxorubicin, may limit PLD's use in patients with baseline cardiac comorbidities, limit the lifetime dosing of an effective palliative treatment, or lead to over-use of unnecessary cardiac testing. This case series describes the experience of 18 patients using prolonged courses of PLD for gynecologic malignancies with no cardiac toxicity. Prognosis is poor, and treatment options limited for patients with recurrent advanced gynecologic cancers. The true level of cardiac risk of prolonged pegylated liposomal doxorubicin (PLD) is not clear. There is no consensus about cardiac monitoring before, during, and after treatment with PLD. Prolonged use of PLD resulted in no symptomatic cardiac toxicity in 18 patients. Prolonged treatment with PLD has clinical benefit for patients undergoing palliative treatment.
Collapse
Affiliation(s)
- S. Yost
- Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - J.L. Konal
- Department of Obstetrics and Gynecology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - A.V. Hoekstra
- Department of Obstetrics and Gynecology, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
- Division of Gynecologic Oncology, West Michigan Cancer Center, Kalamazoo, MI, USA
- Corresponding author at: 200 North Park Street, Kalamazoo, MI 49007-3731, 1-269-382-2500, 1-269-384-8617, USA.
| |
Collapse
|
16
|
Ultrasound-Targeted Microbubble Destruction (UTMD) for Localized Drug Delivery into Tumor Tissue. Ing Rech Biomed 2019. [DOI: 10.1016/j.irbm.2018.11.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
17
|
Xiao K, Liu Q, Al Awwad N, Zhang H, Lai L, Luo Y, Lee JS, Li Y, Lam KS. Reversibly disulfide cross-linked micelles improve the pharmacokinetics and facilitate the targeted, on-demand delivery of doxorubicin in the treatment of B-cell lymphoma. NANOSCALE 2019; 10:8207-8216. [PMID: 29682647 DOI: 10.1039/c8nr00680f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Doxorubicin (DOX) is commonly used to treat human malignancies, and its efficacy can be maximized by limiting the cardiac toxicity when combined with nanoparticles. Here, we reported a unique type of reversibly disulfide cross-linked micellar formulation of DOX (DOX-DCMs) for the targeted therapy of B-cell lymphoma. DOX-DCMs exhibited high drug loading capacity, optimal particle sizes (15-20 nm), outstanding stability in human plasma, and stimuli-responsive drug release profile under reductive conditions. DOX-DCMs significantly improved the pharmacokinetics of DOX, and its elimination half-life (t1/2) and area under curve (AUC) were 5.5 and 12.4 times of that of free DOX, respectively. Biodistribution studies showed that DOX-DCMs were able to preferentially accumulate in the tumor site and significantly reduce the cardiac uptake of DOX. In a xenograft model of human B-cell lymphoma, compared with the equivalent dose of free DOX and non-crosslinked counterpart, DOX-DCMs not only significantly inhibited the tumor growth and prolonged the survival rate, but also remarkably reduced DOX-associated cardiotoxicity. Furthermore, the exogenous administration of N-acetylcysteine (NAC) at 24 h further improved the therapeutic efficacy of DOX-DCMs, which provides a "proof-of-concept" for precise drug delivery on-demand, and may have great translational potential as future cancer nano-therapeutics.
Collapse
Affiliation(s)
- Kai Xiao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy, Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, P.R. China.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Fete MG, Betker JL, Shoemaker RK, Anchordoquy TJ. A novel method for conjugating the terminal amine of peptide ligands to cholesterol: synthesis iRGD-cholesterol. Ther Deliv 2019; 10:11-20. [PMID: 30730822 PMCID: PMC6664274 DOI: 10.4155/tde-2018-0057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/14/2022] Open
Abstract
AIM Conventional conjugation reactions often involve the use of activated PEG as a linker, but concerns about PEG-mediated reduction in intracellular delivery and enhanced immunogenicity have generated interest in developing methods that eliminate the need for a PEG linker. MATERIALS & METHODS Reaction conditions were identified that specifically couples the terminal amine of a cyclic iRGD peptide (CRGDRGPDC) to the hydroxyl moiety of cholesterol through a short carbamate linker. RESULTS & CONCLUSION Using this method for synthesizing iRGD-cholesterol, peptide ligands can be incorporated into lipid-based delivery systems, thereby eliminating concerns about adverse reactions to PEG. Toxicity and stability data indicate low toxicity and adequate serum stability at low ligand levels.
Collapse
Affiliation(s)
- Matthew G Fete
- School of Pharmacy, Rueckert-Hartman College, Regis University, 3333 Regis Blvd, Denver, CO 80221 USA
| | - Jamie L Betker
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, 12850 E. Montview Blvd, Aurora, CO 80045 USA
| | - Richard K Shoemaker
- Department of Chemistry & Biochemistry, University of Colorado, Boulder, CO 80309-0215, USA
| | - Thomas J Anchordoquy
- Skaggs School of Pharmacy & Pharmaceutical Sciences, University of Colorado, 12850 E. Montview Blvd, Aurora, CO 80045 USA
| |
Collapse
|
19
|
Nunes T, Hamdan D, Leboeuf C, El Bouchtaoui M, Gapihan G, Nguyen TT, Meles S, Angeli E, Ratajczak P, Lu H, Di Benedetto M, Bousquet G, Janin A. Targeting Cancer Stem Cells to Overcome Chemoresistance. Int J Mol Sci 2018; 19:E4036. [PMID: 30551640 PMCID: PMC6321478 DOI: 10.3390/ijms19124036] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 12/18/2022] Open
Abstract
Cancers are heterogeneous at the cell level, and the mechanisms leading to cancer heterogeneity could be clonal evolution or cancer stem cells. Cancer stem cells are resistant to most anti-cancer treatments and could be preferential targets to reverse this resistance, either targeting stemness pathways or cancer stem cell surface markers. Gold nanoparticles have emerged as innovative tools, particularly for photo-thermal therapy since they can be excited by laser to induce hyperthermia. Gold nanoparticles can be functionalized with antibodies to specifically target cancer stem cells. Preclinical studies using photo-thermal therapy have demonstrated the feasibility of targeting chemo-resistant cancer cells to reverse clinical chemoresistance. Here, we review the data linking cancer stem cells and chemoresistance and discuss the way to target them to reverse resistance. We particularly focus on the use of functionalized gold nanoparticles in the treatment of chemo-resistant metastatic cancers.
Collapse
Affiliation(s)
- Toni Nunes
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Diaddin Hamdan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Hôpital de La Porte Verte, F-78004 Versailles, France.
| | - Christophe Leboeuf
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Morad El Bouchtaoui
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Guillaume Gapihan
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Thi Thuy Nguyen
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Solveig Meles
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Eurydice Angeli
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
| | - Philippe Ratajczak
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - He Lu
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
| | - Mélanie Di Benedetto
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
| | - Guilhem Bousquet
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Université Paris 13, F-93430 Villetaneuse, France.
- Service d'Oncologie Médicale, AP-HP-Hôpital Avicenne, F-93008 Bobigny, France.
| | - Anne Janin
- Institut National de la Santé et de la Recherche Médicale (INSERM), U1165, F-75010 Paris, France.
- Laboratoire de Pathologie, Université Paris Diderot, Sorbonne Paris Cité, UMR_S1165, F-75010 Paris, France.
- Service de Pathologie, AP-HP-Hôpital Saint-Louis, F-75010 Paris, France.
| |
Collapse
|