1
|
Cancer Stem Cell Relationship with Pro-Tumoral Inflammatory Microenvironment. Biomedicines 2023; 11:biomedicines11010189. [PMID: 36672697 PMCID: PMC9855358 DOI: 10.3390/biomedicines11010189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Inflammatory processes and cancer stem cells (CSCs) are increasingly recognized as factors in the development of tumors. Emerging evidence indicates that CSCs are associated with cancer properties such as metastasis, treatment resistance, and disease recurrence. However, the precise interaction between CSCs and the immune microenvironment remains unexplored. Although evasion of the immune system by CSCs has been extensively studied, new research demonstrates that CSCs can also control and even profit from the immune response. This review provides an overview of the reciprocal interplay between CSCs and tumor-infiltrating immune cells, collecting pertinent data about how CSCs stimulate leukocyte reprogramming, resulting in pro-tumor immune cells that promote metastasis, chemoresistance, tumorigenicity, and even a rise in the number of CSCs. Tumor-associated macrophages, neutrophils, Th17 and regulatory T cells, mesenchymal stem cells, and cancer-associated fibroblasts, as well as the signaling pathways involved in these pro-tumor activities, are among the immune cells studied. Although cytotoxic leukocytes have the potential to eliminate CSCs, immune evasion mechanisms in CSCs and their clinical implications are also known. We intended to compile experimental findings that provide direct evidence of interactions between CSCs and the immune system and CSCs and the inflammatory milieu. In addition, we aimed to summarize key concepts in order to comprehend the cross-talk between CSCs and the tumor microenvironment as a crucial process for the effective design of anti-CSC therapies.
Collapse
|
2
|
Sarhadi VK, Daddali R, Seppänen-Kaijansinkko R. Mesenchymal Stem Cells and Extracellular Vesicles in Osteosarcoma Pathogenesis and Therapy. Int J Mol Sci 2021; 22:11035. [PMID: 34681692 PMCID: PMC8537935 DOI: 10.3390/ijms222011035] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/01/2021] [Accepted: 10/09/2021] [Indexed: 12/29/2022] Open
Abstract
Osteosarcoma (OS) is an aggressive bone tumor that mainly affects children and adolescents. OS has a strong tendency to relapse and metastasize, resulting in poor prognosis and survival. The high heterogeneity and genetic complexity of OS make it challenging to identify new therapeutic targets. Mesenchymal stem cells (MSCs) are multipotent stem cells that can differentiate into adipocytes, osteoblasts, or chondroblasts. OS is thought to originate at some stage in the differentiation process of MSC to pre-osteoblast or from osteoblast precursors. MSCs contribute to OS progression by interacting with tumor cells via paracrine signaling and affect tumor cell proliferation, invasion, angiogenesis, immune response, and metastasis. Extracellular vesicles (EVs), secreted by OS cells and MSCs in the tumor microenvironment, are crucial mediators of intercellular communication, driving OS progression by transferring miRNAs/RNA and proteins to other cells. MSC-derived EVs have both pro-tumor and anti-tumor effects on OS progression. MSC-EVs can be also engineered to deliver anti-tumor cargo to the tumor site, which offers potential applications in MSC-EV-based OS treatment. In this review, we highlight the role of MSCs in OS, with a focus on EV-mediated communication between OS cells and MSCs and their role in OS pathogenesis and therapy.
Collapse
|
3
|
Okuno T, Yokomizo T. Metabolism and biological functions of 12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid. Prostaglandins Other Lipid Mediat 2021; 152:106502. [PMID: 33075476 DOI: 10.1016/j.prostaglandins.2020.106502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 11/23/2022]
Abstract
12(S)-hydroxyheptadeca-5Z,8E,10E-trienoic acid (12-HHT) is a 17-carbon hydroxy fatty acid that is biosynthesized either by enzymatic pathways, like thromboxane synthase (TXAS) and cytochrome P450 or a non-enzymatic pathway. TXAS catalyzes the isomerization reaction from PGH2 to 12-HHT, malondialdehyde, and TXA2 at a ratio of 1:1:1. Furthermore, 12-HHT has been considered as a mere byproduct of TXA2 biosynthesis, and its biological function has long been uncertain. BLT2 was initially identified as a low-affinity leukotriene B4 (LTB4) receptor, which is also activated by various hydroxy-eicosatetraenoic acids (HETEs), suggesting that BLT2 may be activated by other endogenous ligands apart from LTB4 and HETEs. By unbiased ligand screening using crude lipids from rat organs, 12-HHT has been identified as an endogenous agonist for BLT2. The 12-HHT-BLT2 axis induces mast cell migration and contributes to allergic inflammation. BLT2 is also expressed in epithelial cells of the small intestine and skin in mice and contributes to in vivo epithelial barrier functions.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Zhang M, Chen X, Radacsi N. New tricks of old drugs: Repurposing non-chemo drugs and dietary phytochemicals as adjuvants in anti-tumor therapies. J Control Release 2020; 329:96-120. [PMID: 33259852 DOI: 10.1016/j.jconrel.2020.11.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/22/2020] [Accepted: 11/24/2020] [Indexed: 12/14/2022]
Abstract
Combination therapy has long been applied to enhance therapeutic effect and deal with the occurrence of multi-drug resistance in cancer treatment. However, the overlapping toxicity of multiple anticancer drugs to healthy tissues and increasing financial burden on patients emerged as major concerns. As promising alternatives to chemo agents, repurposed non-chemo drugs and dietary phytochemicals have been investigated as adjuvants to conventional anti-tumor therapeutics, offering a safe and economic strategy for combination therapy. In this review, we aim to highlight the advances in research about combination therapy using conventional therapeutics and repurposed drugs or phytochemicals for an enhanced anti-tumor efficacy, along with the mechanisms involved in the synergism. Beyond these, we outlined the potential challenges and solutions for clinical translation of the proposed combination therapy, providing a safe and affordable strategy to improve the reach of cancer therapy to low income regions with such new tricks of old drugs.
Collapse
Affiliation(s)
- Mei Zhang
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom; School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Xianfeng Chen
- School of Engineering, Institute for Bioengineering, University of Edinburgh, The King's Buildings, Edinburgh EH9 3JL, United Kingdom.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, United Kingdom.
| |
Collapse
|
5
|
Giusti F, Casiraghi M, Point E, Damian M, Rieger J, Bon CL, Pozza A, Moncoq K, Banères JL, Catoire LJ. Structure of the agonist 12-HHT in its BLT2 receptor-bound state. Sci Rep 2020; 10:2630. [PMID: 32060341 PMCID: PMC7021728 DOI: 10.1038/s41598-020-59571-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/28/2020] [Indexed: 12/25/2022] Open
Abstract
G Protein-Coupled receptors represent the main communicating pathway for signals from the outside to the inside of most of eukaryotic cells. They define the largest family of integral membrane receptors at the surface of the cells and constitute the main target of the current drugs on the market. The low affinity leukotriene receptor BLT2 is a receptor involved in pro- and anti-inflammatory pathways and can be activated by various unsaturated fatty acid compounds. We present here the NMR structure of the agonist 12-HHT in its BLT2-bound state and a model of interaction of the ligand with the receptor based on a conformational homology modeling associated with docking simulations. Put into perspective with the data obtained with leukotriene B4, our results illuminate the ligand selectivity of BLT2 and may help define new molecules to modulate the activity of this receptor.
Collapse
Affiliation(s)
- Fabrice Giusti
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Institut de Chimie Séparative de Marcoule, ICSM UMR 5257, Site de Marcoule, Bâtiment 426, BP 17171, F-30207, Bagnols sur Cèze Cedex, France
| | - Marina Casiraghi
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.,Department of Molecular and Cellular Physiology, Stanford University School of Medicine, 279 Campus Drive, 94305, Stanford California, USA
| | - Elodie Point
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, , 15 av. Charles Flahault, 34093, Montpellier, France
| | - Jutta Rieger
- Institut Parisien de Chimie Moléculaire, Sorbonne Université, CNRS, UMR 8232, Equipe Chimie des Polymères, 4 place Jussieu, 75252, Paris Cedex, 05, France
| | - Christel Le Bon
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Alexandre Pozza
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Karine Moncoq
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université Montpellier, ENSCM, , 15 av. Charles Flahault, 34093, Montpellier, France
| | - Laurent J Catoire
- Laboratoire de Biologie Physico-Chimique des Protéines Membranaires, UMR 7099, CNRS/Université de Paris, Institut de Biologie Physico-Chimique (FRC 550), 13 rue Pierre et Marie Curie, F-75005, Paris, France.
| |
Collapse
|
6
|
Abstract
The majority of evidence linking anti-colorectal cancer (CRC) activity with omega-3 polyunsaturated fatty acids (O3FAs) has focussed on decreased CRC risk (prevention). More recently, preclinical data and human observational studies have begun to make the case for adjuvant treatment of advanced CRC. Herein, we review latest data regarding the effect of O3FAs on post-diagnosis CRC outcomes, including mechanistic preclinical data, evidence that O3FAs have beneficial effects on efficacy and tolerability of CRC chemotherapy, and human epidemiological data linking dietary O3FA intake with CRC outcomes. We also highlight ongoing randomised controlled trials of O3FAs with CRC endpoints and discuss critical gaps in the evidence base, which include limited understanding of the effects of O3FAs on the tumour microenvironment, the host immune response to CRC, and the intestinal microbiome.
Collapse
Affiliation(s)
- Milene Volpato
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK
| | - Mark A Hull
- Leeds Institute of Biomedical and Clinical Sciences, St James's University Hospital, University of Leeds, Leeds, LS9 7TF, UK.
| |
Collapse
|
7
|
Okuno T, Yokomizo T. Biological functions of 12( S)-hydroxyheptadecatrienoic acid as a ligand of leukotriene B 4 receptor 2. Inflamm Regen 2018; 38:29. [PMID: 30397418 PMCID: PMC6205785 DOI: 10.1186/s41232-018-0087-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 09/18/2018] [Indexed: 12/28/2022] Open
Abstract
Although 12(S)-hydroxyheptadecatrienoic acid (12-HHT) is an abundant fatty acid, it is long considered a byproduct of thromboxane A2 production. We identified a leukotriene B4 receptor 2 (BLT2)-specific agonistic activity in lipid extracts from rat small intestine, and mass spectrometric analysis of partially purified lipids containing BLT2 agonistic activity revealed that 12-HHT is an endogenous ligand of BLT2. In a dextran sulfate sodium (DSS)-induced inflammatory colitis model, BLT2-deficient mice exhibited enhanced intestinal inflammation, possibly due to impaired epithelial barrier function. In a skin wound healing model, BLT2-deficient mice exhibited delayed wound healing via dampened keratinocyte migration. BLT2 also accelerates corneal wound healing, and eye drops containing a non-steroidal anti-inflammatory drug (NSAID) inhibit the production of 12-HHT, resulting in delayed corneal wound healing. Furthermore, BLT2 is expressed in pulmonary epithelial type II cells and vascular endothelial cells in the mouse lung, and BLT2-deficient mice are more susceptible to lung damage by pneumolysin. In this review, we summarize the identification and characterization of 12-HHT as a ligand for BLT2 and discuss recent research on the physiological and pathophysiological roles of the 12-HHT-BLT2 axis. Some side effects of NSAIDs such as delayed wound healing may be caused by reduced 12-HHT production rather than diminished production of prostaglandins.
Collapse
Affiliation(s)
- Toshiaki Okuno
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|