1
|
Ahmadi SE, Rahimian E, Rahimi S, Zarandi B, Bahraini M, Soleymani M, Safdari SM, Shabannezhad A, Jaafari N, Safa M. From regulation to deregulation of p53 in hematologic malignancies: implications for diagnosis, prognosis and therapy. Biomark Res 2024; 12:137. [PMID: 39538363 PMCID: PMC11565275 DOI: 10.1186/s40364-024-00676-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
The p53 protein, encoded by the TP53 gene, serves as a critical tumor suppressor, playing a vital role in maintaining genomic stability and regulating cellular responses to stress. Dysregulation of p53 is frequently observed in hematological malignancies, significantly impacting disease progression and patient outcomes. This review aims to examine the regulatory mechanisms of p53, the implications of TP53 mutations in various hematological cancers, and emerging therapeutic strategies targeting p53. We conducted a comprehensive literature review to synthesize recent findings related to p53's multifaceted role in hematologic cancers, focusing on its regulatory pathways and therapeutic potential. TP53 mutations in hematological malignancies often lead to treatment resistance and poor prognosis. Current therapeutic strategies, including p53 reactivation and gene therapy, show promise in improving treatment outcomes. Understanding the intricacies of p53 regulation and the consequences of its mutations is essential for developing effective diagnostic and therapeutic strategies in hematological malignancies, ultimately enhancing patient care and survival.
Collapse
Affiliation(s)
- Seyed Esmaeil Ahmadi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Rahimian
- Department of Medical Translational Oncology, National Center for Tumor Diseases (NCT) Dresden, Dresden, Germany
| | - Samira Rahimi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Bahman Zarandi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Bahraini
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maral Soleymani
- Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Mehrab Safdari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ashkan Shabannezhad
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Niloofar Jaafari
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Temaj G, Chichiarelli S, Telkoparan-Akillilar P, Saha S, Nuhii N, Hadziselimovic R, Saso L. P53: A key player in diverse cellular processes including nuclear stress and ribosome biogenesis, highlighting potential therapeutic compounds. Biochem Pharmacol 2024; 226:116332. [PMID: 38830426 DOI: 10.1016/j.bcp.2024.116332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/05/2024]
Abstract
The tumor suppressor proteins are key transcription factors involved in the regulation of various cellular processes, such as apoptosis, DNA repair, cell cycle, senescence, and metabolism. The tumor suppressor protein p53 responds to different type of stress signaling, such as hypoxia, DNA damage, nutrient deprivation, oncogene activation, by activating or repressing the expression of different genes that target processes mentioned earlier. p53 has the ability to modulate the activity of many other proteins and signaling pathway through protein-protein interaction, post-translational modifications, or non-coding RNAs. In many cancers the p53 is found to be mutated or inactivated, resulting in the loss of its tumor suppressor function and acquisition of new oncogenic properties. The tumor suppressor protein p53 also plays a role in the development of other metabolic disorders such as diabetes, obesity, and fatty liver disease. In this review, we will summarize the current data and knowledge on the molecular mechanisms and the functions of p53 in different pathways and processes at the cellular level and discuss the its implications for human health and disease.
Collapse
Affiliation(s)
- Gazmend Temaj
- Faculty of Pharmacy, College UBT, 10000 Prishtina, Kosovo.
| | - Silvia Chichiarelli
- Department of Biochemical Sciences "A. Rossi-Fanelli", Sapienza University of Rome, 00185 Rome, Italy.
| | | | - Sarmistha Saha
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura 00185, Uttar Pradesh, India.
| | - Nexhibe Nuhii
- Department of Pharmacy, Faculty of Medical Sciences, State University of Tetovo, 1200 Tetovo, Macedonia.
| | - Rifat Hadziselimovic
- Faculty of Science, University of Sarajevo, 71000 Sarajevo, Bosnia and Herzegovina.
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", La Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
3
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
4
|
Naeimzadeh Y, Tajbakhsh A, Fallahi J. Understanding the prion-like behavior of mutant p53 proteins in triple-negative breast cancer pathogenesis: The current therapeutic strategies and future directions. Heliyon 2024; 10:e26260. [PMID: 38390040 PMCID: PMC10881377 DOI: 10.1016/j.heliyon.2024.e26260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/20/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Breast cancer (BC) is viewed as a significant public health issue and is the primary cause of cancer-related deaths among women worldwide. Triple-negative breast cancer (TNBC) is a particularly aggressive subtype that predominantly affects young premenopausal women. The tumor suppressor p53 playsa vital role in the cellular response to DNA damage, and its loss or mutations are commonly present in many cancers, including BC. Recent evidence suggests that mutant p53 proteins can aggregate and form prion-like structures, which may contribute to the pathogenesis of different types of malignancies, such as BC. This review provides an overview of BC molecular subtypes, the epidemiology of TNBC, and the role of p53 in BC development. We also discuss the potential implications of prion-like aggregation in BC and highlight future research directions. Moreover, a comprehensive analysis of the current therapeutic approaches targeting p53 aggregates in BC treatment is presented. Strategies including small molecules, chaperone inhibitors, immunotherapy, CRISPR-Cas9, and siRNA are discussed, along with their potential benefits and drawbacks. The use of these approaches to inhibit p53 aggregation and degradation represents a promising target for cancer therapy. Future investigations into the efficacy of these approaches against various p53 mutations or binding to non-p53 proteins should be conducted to develop more effective and personalized therapies for BC treatment.
Collapse
Affiliation(s)
- Yasaman Naeimzadeh
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jafar Fallahi
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, 7133654361, Iran
| |
Collapse
|
5
|
Zeng Y, Ng JPL, Wang L, Xu X, Law BYK, Chen G, Lo HH, Yang L, Yang J, Zhang L, Qu L, Yun X, Zhong J, Chen R, Zhang D, Wang Y, Luo W, Qiu C, Huang B, Liu W, Liu L, Wong VKW. Mutant p53 R211* ameliorates inflammatory arthritis in AIA rats via inhibition of TBK1-IRF3 innate immune response. Inflamm Res 2023; 72:2199-2219. [PMID: 37935918 PMCID: PMC10656327 DOI: 10.1007/s00011-023-01809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 09/12/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is an autoimmune inflammation disease characterized by imbalance of immune homeostasis. p53 mutants are commonly described as the guardian of cancer cells by conferring them drug-resistance and immune evasion. Importantly, p53 mutations have also been identified in RA patients, and this prompts the investigation of its role in RA pathogenesis. METHODS The cytotoxicity of disease-modifying anti-rheumatic drugs (DMARDs) against p53 wild-type (WT)/mutant-transfected RA fibroblast-like synoviocytes (RAFLSs) was evaluated by MTT assay. Adeno-associated virus (AAV) was employed to establish p53 WT/R211* adjuvant-induced arthritis (AIA) rat model. The arthritic condition of rats was assessed by various parameters such as micro-CT analysis. Knee joint samples were isolated for total RNA sequencing analysis. The expressions of cytokines and immune-related genes were examined by qPCR, ELISA assay and immunofluorescence. The mechanistic pathway was determined by immunoprecipitation and Western blotting in vitro and in vivo. RESULTS Among p53 mutants, p53R213* exhibited remarkable DMARD-resistance in RAFLSs. However, AAV-induced p53R211* overexpression ameliorated inflammatory arthritis in AIA rats without Methotrexate (MTX)-resistance, and our results discovered the immunomodulatory effect of p53R211* via suppression of T-cell activation and T helper 17 cell (Th17) infiltration in rat joint, and finally downregulated expressions of pro-inflammatory cytokines. Total RNA sequencing analysis identified the correlation of p53R211* with immune-related pathways. Further mechanistic studies revealed that p53R213*/R211* instead of wild-type p53 interacted with TANK-binding kinase 1 (TBK1) and suppressed the innate immune TBK1-Interferon regulatory factor 3 (IRF3)-Stimulator of interferon genes (STING) cascade. CONCLUSIONS This study unravels the role of p53R213* mutant in RA pathogenesis, and identifies TBK1 as a potential anti-inflammatory target.
Collapse
Affiliation(s)
- Yaling Zeng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jerome P L Ng
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Linna Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiongfei Xu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Betty Yuen Kwan Law
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Guobing Chen
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Hang Hong Lo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lijun Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jiujie Yang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Lei Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Liqun Qu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Xiaoyun Yun
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Jing Zhong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Ruihong Chen
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Dingqi Zhang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Yuping Wang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Weidan Luo
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Congling Qiu
- Department of Microbiology and Immunology, Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, 510630, China
| | - Baixiong Huang
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China
| | - Wenfeng Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, 529020, China
| | - Liang Liu
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| | - Vincent Kam Wai Wong
- Dr. Neher's Biophysics Laboratory for Innovative Drug Discovery, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, 999078, China.
| |
Collapse
|
6
|
Cai BH, Sung YT, Chen CC, Shaw JF, Hsin IL. The Competition of Yin and Yang: Exploring the Role of Wild-Type and Mutant p53 in Tumor Progression. Biomedicines 2023; 11:biomedicines11041192. [PMID: 37189810 DOI: 10.3390/biomedicines11041192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
The protein p53 is a well-known tumor suppressor that plays a crucial role in preventing cancer development [...].
Collapse
Affiliation(s)
- Bi-He Cai
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Yu-Te Sung
- Department of Plastic Surgery, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Chia-Chi Chen
- School of Medicine, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Physical Therapy, I-Shou University, Kaohsiung City 82445, Taiwan
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung City 82445, Taiwan
- Department of Pathology, E-Da Hospital, I-Shou University, Kaohsiung City 82445, Taiwan
| | - Jei-Fu Shaw
- Department of Biological Science and Technology, I-Shou University, Kaohsiung City 82445, Taiwan
| | - I-Lun Hsin
- Institute of Medicine, Chung Shan Medical University, Taichung City 40201, Taiwan
| |
Collapse
|
7
|
Nugraha HK, Wiratnaya IGE, Astawa P, Sumadi IWJ. bcl-2 and p53 as novel biomarkers for predicting malignant transformation in chronic osteomyelitis. Musculoskelet Surg 2023; 107:97-103. [PMID: 34993927 DOI: 10.1007/s12306-021-00733-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/29/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To find whether B-cell lymphoma 2 (bcl-2) and p53 proteins could be used as parameters to detect malignant transformation of chronic osteomyelitis. We also attempted to determine whether they could be used to differentiate between secondary squamous cell carcinoma (SCC) resulting from chronic osteomyelitis, and primary cutaneous squamous cell carcinoma. METHODS Retrospective study was conducted during 5 years period, resulting in 7 patients in each group: secondary squamous cell carcinoma arising from chronic osteomyelitis, primary cutaneous squamous cell carcinoma, and chronic osteomyelitis patients. Immunohistochemistry staining with bcl-2 and p53 was performed with the pathologist blinded to the sample groups. RESULTS Contingency coefficient test was performed to assess the correlation between the biomarker status (bcl-2 and p53) and the case groups. Significant moderate correlations of bcl-2 and p53 were found between groups of chronic osteomyelitis and squamous cell carcinoma arising from chronic osteomyelitis in terms of malignant transformation (p = 0.005 for bcl-2 and p = 0.031 for p53). Insignificant correlations of bcl-2 and p53 expression were found between primary cutaneous squamous cell carcinoma and secondary squamous cell carcinoma arising from chronic osteomyelitis group (p = 0.577). CONCLUSIONS The expression of bcl-2 and p-53 is significantly correlated with chronic osteomyelitis malignant transformation into squamous cell carcinoma.
Collapse
Affiliation(s)
- Hans Kristian Nugraha
- Department of Orthopaedic and Traumatology, Sanglah General Hospital, Faculty of Medicine, University of Udayana, Denpasar, Bali, Indonesia
| | - I Gede Eka Wiratnaya
- Department of Orthopaedic and Traumatology, Sanglah General Hospital, Faculty of Medicine, University of Udayana, Denpasar, Bali, Indonesia.
| | - Putu Astawa
- Department of Orthopaedic and Traumatology, Sanglah General Hospital, Faculty of Medicine, University of Udayana, Denpasar, Bali, Indonesia
| | - I Wayan Juli Sumadi
- Deparment of Anatomical Pathology, Sanglah General Hospital, Faculty of Medicine, University of Udayana, Denpasar, Bali, Indonesia
| |
Collapse
|
8
|
Wang H, Guo M, Wei H, Chen Y. Targeting p53 pathways: mechanisms, structures, and advances in therapy. Signal Transduct Target Ther 2023; 8:92. [PMID: 36859359 PMCID: PMC9977964 DOI: 10.1038/s41392-023-01347-1] [Citation(s) in RCA: 233] [Impact Index Per Article: 116.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/19/2022] [Accepted: 02/07/2023] [Indexed: 03/03/2023] Open
Abstract
The TP53 tumor suppressor is the most frequently altered gene in human cancers, and has been a major focus of oncology research. The p53 protein is a transcription factor that can activate the expression of multiple target genes and plays critical roles in regulating cell cycle, apoptosis, and genomic stability, and is widely regarded as the "guardian of the genome". Accumulating evidence has shown that p53 also regulates cell metabolism, ferroptosis, tumor microenvironment, autophagy and so on, all of which contribute to tumor suppression. Mutations in TP53 not only impair its tumor suppressor function, but also confer oncogenic properties to p53 mutants. Since p53 is mutated and inactivated in most malignant tumors, it has been a very attractive target for developing new anti-cancer drugs. However, until recently, p53 was considered an "undruggable" target and little progress has been made with p53-targeted therapies. Here, we provide a systematic review of the diverse molecular mechanisms of the p53 signaling pathway and how TP53 mutations impact tumor progression. We also discuss key structural features of the p53 protein and its inactivation by oncogenic mutations. In addition, we review the efforts that have been made in p53-targeted therapies, and discuss the challenges that have been encountered in clinical development.
Collapse
Affiliation(s)
- Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics, Laboratory of Structural Biology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
| |
Collapse
|
9
|
Wang Y, Liu S, Zhang D, Xiao Q, Huang S. Ultrasensitive electrochemical platform for the p53 gene via molecular beacon-mediated circular strand displacement and terminal deoxynucleotidyl transferase-mediated signal amplification strategy. Analyst 2023; 148:1005-1015. [PMID: 36723078 DOI: 10.1039/d2an01676a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
As an important tumor suppressor gene, the p53 gene is considered to be a typical biomarker for the early diagnosis and prognosis evaluation of severe cancer. Herein, an electrochemical biosensor was proposed for the ultrasensitive detection of the p53 gene based on molecular beacon-mediated circular strand displacement polymerization combined with terminal deoxynucleotide transferase-mediated template-free DNA extension. Firstly, the p53 gene opened the hairpin structure of the molecular beacon, thereby exposing the binding sequence region of the primer DNA. The circular strand displacement polymerization occurred in the presence of the primer DNA and phi29 DNA polymerase, subsequently resulting in the circulation of the p53 gene. With the catalysis of the terminal deoxynucleotide transferase, the 3'-OH terminal sequence of the molecular beacon elongated to produce long single-stranded DNA under the template-free DNA extension. Methylene blue bound with such DNA strands generated a strong differential pulse voltammetry (DPV) signal with a peak potential of -0.28 V. Under the optimal detection conditions, the DPV signal of methylene blue showed good linear relationships with the logarithm value of the p53 gene in two concentration ranges of 0.05 fM to 3 pM and 5 fM to 100 fM, and the detection limit of the p53 gene was as low as 0.018 fM. This electrochemical biosensor possessed high recognition ability for the p53 gene in its analogues and was successfully applied for p53 gene analysis in human serum samples.
Collapse
Affiliation(s)
- Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Shuai Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Dongyou Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| | - Shan Huang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, P. R. China.
| |
Collapse
|
10
|
Targeting Y220C mutated p53 by Foeniculum vulgare-derived phytochemicals as cancer therapeutics. J Mol Model 2023; 29:55. [PMID: 36700982 DOI: 10.1007/s00894-023-05454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023]
Abstract
CONTEXT The mutations in the TP53 gene are the most frequent (50-60% of human cancer) genetic alterations in cancer cells, indicating the critical role of wild-type p53 in the regulation of cell proliferation and apoptosis upon oncogenic stress. Most missense mutations are clustered in the DNA-binding core domain, disrupting DNA binding ability. However, some mutations like Y220C occur outside the DNA binding domain and are associated with p53 structure destabilization. Overall, the results of these mutations are single amino acid substitutions in p53 and the production of dysfunctional p53 protein in large amounts, consequently allowing the escape of apoptosis and rapid progression of tumor growth. Thus, therapeutic targeting of mutant p53 in tumors to restore its wild-type tumor suppression activity has immense potential for translational cancer research. Various molecules have been discovered with modern scientific techniques to reactivate mutant p53 by reverting structural changes and/or DNA binding ability. These compounds include small molecules, various peptides, and phytochemicals. TP53 protein is long thought of as a potential target; however, its translation for therapeutic purposes is still in its infancy. The study comprehensively analyzed the therapeutic potential of small phytochemicals from Foeniculum vulgare (Fennel) with drug-likeness and capability to reactivate mutant p53 (Y220C) through molecular docking simulation. The docking study and the stable molecular dynamic simulations revealed juglalin (- 8.6 kcal/mol), retinol (- 9.14 kcal/mol), and 3-nitrofluoranthene (- 8.43 kcal/mol) significantly bind to the mutated site suggesting the possibility of drug designing against the Y220C mutp53. The study supports these compounds for further animal based in vivo and in vitro research to validate their efficacy. METHODS For the purposes of drug repurposing, recently in-silico methods have presented with opportunity to rule out many compounds which have less probability to act as a drug based on their structural moiety and interaction with the target macromolecule. The study here utilizes molecular docking via Autodock 4.2.6 and molecular dynamics using Schrodinger 2021 to find potential therapeutic options which are capable to reactive the mutated TP53 protein.
Collapse
|
11
|
Zhu Y, Sun W, Jiang X, Bai R, Luo Y, Gao Y, Li S, Huang Z, Gong Y, Xie C. Differential effects of WRAP53 transcript variants on non-small cell lung cancer cell behaviors. PLoS One 2023; 18:e0281132. [PMID: 36706151 PMCID: PMC9882892 DOI: 10.1371/journal.pone.0281132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 01/13/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The WD40-encoding RNA antisense to p53 (WRAP53) is an antisense gene of TP53 with three transcriptional start sites producing three transcript variants involved in the progression of non-small cell lung cancer. However, the mechanism by which these different transcript variants regulate non-small cell lung cancer cell behaviors is to be elucidated. METHODS Two non-small cell lung cancer cell lines, A549 cells with wild-type p53 and H1975 with mutated p53, were transfected with WRAP53-1α and WRAP53-1β siRNA. The biological effects were assessed via colony formation, cell viability, apoptosis, cell cycle, wound healing and cell invasion assays, as well as immunoblotting. RESULTS Knockdown of WRAP53-1α increased the mRNA and protein levels of p53; suppressed colony formation and proliferation of A549 cells but promoted them in H1975 cells; increased the proportion of cells in the G0/G1 phase in A549 cells but decreased that in H1975 cells; and suppressed migration and invasion in A549 cells but not in H1975 cells. Conversely, knockdown of WRAP53-1β had no effect on p53 expression; promoted the growth of A549 cells but not of H1975 cells; decreased the proportion of cells in the G0/G1 phase in A549 cells but not in H1975 cells; and promoted migration and invasion in A549 cells but not in H1975 cells. Knockdown of both WRAP53-1α and WRAP53-1β promoted apoptosis in A549 cells but not in H1975 cells. CONCLUSIONS WRAP53 transcript variants exerted different functions in non-small cell lung cancer cells and regulated non-small cell lung cancer cell behaviors depending on the p53 expression.
Collapse
Affiliation(s)
- Yan Zhu
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Oncology, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, China
| | - Wenjie Sun
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Xueping Jiang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Rui Bai
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yuan Luo
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yanping Gao
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Shuying Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhengrong Huang
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
| | - Yan Gong
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Tumour Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, China
- * E-mail: (CX); (YG)
| |
Collapse
|
12
|
Sengupta S, Ghufran SM, Khan A, Biswas S, Roychoudhury S. Transition of amyloid/mutant p53 from tumor suppressor to an oncogene and therapeutic approaches to ameliorate metastasis and cancer stemness. Cancer Cell Int 2022; 22:416. [PMID: 36567312 PMCID: PMC9791775 DOI: 10.1186/s12935-022-02831-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/11/2022] [Indexed: 12/27/2022] Open
Abstract
The tumor suppressor p53 when undergoes amyloid formation confers several gain-of-function (GOF) activities that affect molecular pathways crucial for tumorigenesis and progression like some of the p53 mutants. Even after successful cancer treatment, metastasis and recurrence can result in poor survival rates. The major cause of recurrence is mainly the remnant cancer cells with stem cell-like properties, which are resistant to any chemotherapy treatment. Several studies have demonstrated the role of p53 mutants in exacerbating cancer stemness properties and epithelial-mesenchymal transition in these remnant cancer cells. Analyzing the amyloid/mutant p53-mediated signaling pathways that trigger metastasis, relapse or chemoresistance may be helpful for the development of novel or improved individualized treatment plans. In this review, we discuss the changes in the metabolic pathways such as mevalonate pathway and different signaling pathways such as TGF-β, PI3K/AKT/mTOR, NF-κB and Wnt due to p53 amyloid formation, or mutation. In addition to this, we have discussed the role of the regulatory microRNAs and lncRNAs linked with the mutant or amyloid p53 in human malignancies. Such changes promote tumor spread, potential recurrence, and stemness. Importantly, this review discusses the cancer therapies that target either mutant or amyloid p53, restore wild-type functions, and exploit the synthetic lethal interactions with mutant p53.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Shaikh Maryam Ghufran
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Aqsa Khan
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Subhrajit Biswas
- grid.444644.20000 0004 1805 0217Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Sector-125, Noida, Uttar Pradesh, 201313 India
| | - Susanta Roychoudhury
- grid.489176.50000 0004 1803 6730Division of Research, Saroj Gupta Cancer Centre and Research Institute, Kolkata, 700063 India ,grid.417635.20000 0001 2216 5074Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
13
|
Roszkowska KA, Piecuch A, Sady M, Gajewski Z, Flis S. Gain of Function (GOF) Mutant p53 in Cancer-Current Therapeutic Approaches. Int J Mol Sci 2022; 23:13287. [PMID: 36362074 PMCID: PMC9654280 DOI: 10.3390/ijms232113287] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/26/2022] [Accepted: 10/28/2022] [Indexed: 11/08/2023] Open
Abstract
Continuous development of personalized treatments is undoubtedly beneficial for oncogenic patients' comfort and survival rate. Mutant TP53 is associated with a worse prognosis due to the occurrence of metastases, increased chemoresistance, and tumor growth. Currently, numerous compounds capable of p53 reactivation or the destabilization of mutant p53 are being investigated. Several of them, APR-246, COTI-2, SAHA, and PEITC, were approved for clinical trials. This review focuses on these novel therapeutic opportunities, their mechanisms of action, and their significance for potential medical application.
Collapse
Affiliation(s)
- Katarzyna A. Roszkowska
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| | | | | | | | - Sylwia Flis
- Center for Translational Medicine, Warsaw University of Life Sciences, 100 Nowoursynowska St., 02-797 Warsaw, Poland
| |
Collapse
|
14
|
Zeng X, Lin C, Sun Y, Zhang J. Serum TP53 Protein Level as a Sensitive Biomarker for the Diagnosis of Myocardial Damage in Children. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e936248. [PMID: 35751366 PMCID: PMC9241449 DOI: 10.12659/msm.936248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND High levels of TP53 protein can lead to apoptosis of myocardial cells. However, TP53 protein influence of myocardial damage remains unclear. This prospective study investigated the involvement of TP53 protein in secondary myocardial damage in children up to 18 years of age. MATERIAL AND METHODS Serum TP53 protein, N-terminal prohormone B-type natriuretic peptide (NT-ProBNP), cardiac troponin-I (cTnI), and creatine kinase isoenzyme MB (CK-MB) concentrations were measured in 50 hospitalized patients with secondary myocardial damage, 50 hospitalized patients without myocardial damage, and 50 healthy individuals (control). Cardiac damage was diagnosed based on cTnI, NT-ProBNP, and CK-MB levels, with electrocardiographic evidence as the reference. The appropriate cut-off value of TP53 protein for secondary myocardial damage was analyzed by receiver operating characteristic (ROC) curves. RESULTS The serum TP53 protein, NT-ProBNP, cTnI, and CK-MB concentrations of the patients with and without myocardial damage were 10.20±1.20 and 0.30±0.10 ng/L, 505.30 and 107.8 ng/L, 0.23±0.13 and 0.02±0.01 μg/L, and 28.30±5.13 and 12.24±4.29 IU/L, respectively. For the 50 patients with myocardial damage, the area under the ROC curve for serum TP53 protein, NT-ProBNP, cTnI, and CK-MB concentrations were 0.89 (95% CI: 0.81-0.95), 0.83 (95% CI: 0.77-0.91), 0.92 (95% CI: 0.84-0.97), and 0.85 (95% CI: 0.78-0.93), respectively, and the diagnostic cut-off values were 12.00 ng/L, 500.00 ng/L, 0.16 μg/L, and 27.00 IU/L, respectively, with positive likelihood ratios of 20.8, 13.2, 24.6, and 15.6. CONCLUSIONS TP53 protein is a valid biomarker of secondary myocardial damage in pediatric patients and can be diagnostic.
Collapse
Affiliation(s)
- Xianglin Zeng
- Department of Pediatrics, Shunde Women's and Children's Hospital of Guangdong Medical University, Foshan, Guangdong, China (mainland)
| | - Chunwang Lin
- Department of Pediatrics, Shunde Women's and Children's Hospital of Guangdong Medical University, Foshan, Guangdong, China (mainland)
| | - Yanna Sun
- Department of Pediatrics, Shunde Women's and Children's Hospital of Guangdong Medical University, Foshan, Guangdong, China (mainland)
| | - Jianping Zhang
- Department of Pediatrics, Shunde Women's and Children's Hospital of Guangdong Medical University, Foshan, Guangdong, China (mainland)
| |
Collapse
|
15
|
Huang YA, Pan GQ, Wang J, Li JQ, Chen J, Wu YH. Heterogeneous graph embedding model for predicting interactions between TF and target gene. Bioinformatics 2022; 38:2554-2560. [PMID: 35266510 DOI: 10.1093/bioinformatics/btac148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/13/2022] [Accepted: 03/09/2022] [Indexed: 11/15/2022] Open
Abstract
MOTIVATION Identifying the target genes of transcription factors (TFs) is of great significance for biomedical researches. However, using biological experiments to identify TF-target gene interactions is still time consuming, expensive and limited to small scale. Existing computational methods for predicting underlying genes for TF to target is mainly proposed for their binding sites rather than the direct interaction. To bridge this gap, we in this work proposed a deep learning prediction model, named HGETGI, to identify the new TF-target gene interaction. Specifically, the proposed HGETGI model learns the patterns of the known interaction between TF and target gene complemented with their involvement in different human disease mechanisms. It performs prediction based on random walk for meta-path sampling and node embedding in a skip-gram manner. RESULTS We evaluated the prediction performance of the proposed method on a real dataset and the experimental results show that it can achieve the average area under the curve of 0.8519 ± 0.0731 in 5-fold cross validation. Besides, we conducted case studies on the prediction of two important kinds of TF, NFKB1 and TP53. As a result, 33 and 32 in the top-40 ranking lists of NFKB1 and TP53 were successfully confirmed by looking up another public database(hTftarget). It is envisioned that the proposed HGETGI method is feasible and effective for predicting TF-target gene interactions on a large scale. AVAILABILITY AND IMPLEMENTATION The source code and dataset are available at https://github.com/PGTSING/HGETGI. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yu-An Huang
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| | - Gui-Qing Pan
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| | - Jia Wang
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| | - Jian-Qiang Li
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| | - Jie Chen
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| | - Yang-Han Wu
- College of Computer Science and Software Engineering, Shenzhen University, 3688 Nanhai Avenue, Shenzhen, China
| |
Collapse
|
16
|
Li X, Niu Z, Sun C, Zhuo S, Yang H, Yang X, Liu Y, Yan C, Li Z, Cao Q, Ji G, Ding Y, Zhuang T, Zhu J. Regulation of P53 signaling in breast cancer by the E3 ubiquitin ligase RNF187. Cell Death Dis 2022; 13:149. [PMID: 35165289 PMCID: PMC8844070 DOI: 10.1038/s41419-022-04604-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 01/19/2022] [Accepted: 02/01/2022] [Indexed: 01/15/2023]
Abstract
The tumor suppressor P53 plays critical role in preventing cancer. P53 is rarely mutated and remains functional in luminal-type breast cancer(1). According to current knowledge, wild-type P53 function is tightly controlled by posttranslational modifications, such as ubiquitination. Several ubiquitin ligases have been shown to regulate P53 ubiquitination and protein stability. Here, we report that RNF187, a RING family ubiquitin ligase, facilitates breast cancer growth and inhibits apoptosis by modulating P53 signaling. RNF187 expression was elevated in breast cancer and correlated with breast cancer survival only in the P53 wild-type groups. Bioinformatic analysis showed that the expression of RNF187 was negatively correlated with the expression of P53 target genes, such as IGFBP3 and FAS, in breast cancer. RNF187 depletion inhibited breast cancer growth and facilitated cell death. RNA sequencing analysis indicated that RNF187 could be an important modulator of P53 signaling. Further experiments showed that RNF187 interacts with P53 and promotes its degradation by facilitating its polyubiquitination in breast cancer cells. Interestingly, the in vitro ubiquitin assay showed that RNF187 can directly ubiquitinate P53 in a manner independent of MDM2. These findings reveal a novel direct P53 regulator and a potential therapeutic target for breast cancer.
Collapse
|
17
|
OUP accepted manuscript. Carcinogenesis 2022; 43:494-503. [DOI: 10.1093/carcin/bgac015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/08/2022] [Accepted: 01/28/2022] [Indexed: 11/12/2022] Open
|
18
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [PMID: 34861354 DOI: 10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 12/25/2022]
Abstract
Globally, pancreatic cancer (PC) is a common and highly malignant gastrointestinal tumor that is characterized by an insidious onset and ready metastasis and recurrence. Over recent decades, the incidence of PC has been increasing on an annual basis; however, the pathogenesis of this condition remains enigmatic. PC is not sensitive to radio- or chemotherapy, and except for early surgical resection, there is no curative treatment regime; consequently, the prognosis for patients with PC is extremely poor. Transcription factor p53 is known to play key roles in many important biological processes in vertebrates, including normal cell growth, differentiation, cell cycle progression, senescence, apoptosis, metabolism, and DNA damage repair. However, there is a significant paucity of basic and clinical studies to describe how p53 gene mutations or protein dysfunction facilitate the occurrence, progression, invasion, and resistance to therapy, of malignancies, including PC. Herein, we describe the involvement of p53 signaling reactivation in PC treatment as well as its underlying molecular mechanisms, thereby providing useful insights for targeting p53-related signal pathways in PC therapy.
Collapse
Affiliation(s)
- Aixin Ou
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Xiangxuan Zhao
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China
| | - Zaiming Lu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, LN, China.
| |
Collapse
|
19
|
Ou A, Zhao X, Lu Z. The potential roles of p53 signaling reactivation in pancreatic cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188662. [DOI: doi10.1016/j.bbcan.2021.188662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Marei HE, Althani A, Afifi N, Hasan A, Caceci T, Pozzoli G, Morrione A, Giordano A, Cenciarelli C. p53 signaling in cancer progression and therapy. Cancer Cell Int 2021; 21:703. [PMID: 34952583 PMCID: PMC8709944 DOI: 10.1186/s12935-021-02396-8] [Citation(s) in RCA: 223] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
The p53 protein is a transcription factor known as the "guardian of the genome" because of its critical function in preserving genomic integrity. The TP53 gene is mutated in approximately half of all human malignancies, including those of the breast, colon, lung, liver, prostate, bladder, and skin. When DNA damage occurs, the TP53 gene on human chromosome 17 stops the cell cycle. If p53 protein is mutated, the cell cycle is unrestricted and the damaged DNA is replicated, resulting in uncontrolled cell proliferation and cancer tumours. Tumor-associated p53 mutations are usually associated with phenotypes distinct from those caused by the loss of the tumor-suppressing function exerted by wild-type p53protein. Many of these mutant p53 proteins have oncogenic characteristics, and therefore modulate the ability of cancer cells to proliferate, escape apoptosis, invade and metastasize. Because p53 deficiency is so common in human cancer, this protein is an excellent option for cancer treatment. In this review, we will discuss some of the molecular pathways by which mutant p53 proteins might perform their oncogenic activities, as well as prospective treatment methods based on restoring tumor suppressive p53 functions.
Collapse
Affiliation(s)
- Hany E Marei
- Department of Cytology and Histology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, 35116, Egypt.
| | - Asmaa Althani
- Biomedical Research Center, Qatar University, Doha, Qatar
| | | | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, Qatar
| | - Thomas Caceci
- Biomedical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA, USA
| | - Giacomo Pozzoli
- Pharmacology Unit, Fondazione Policlinico A. Gemelli, IRCCS, Rome, Italy
| | - Andrea Morrione
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine. Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA
- Department of Medical Biotechnology, University of Siena, Siena, Italy
| | | |
Collapse
|
21
|
Noor H, Briggs NE, McDonald KL, Holst J, Vittorio O. TP53 Mutation Is a Prognostic Factor in Lower Grade Glioma and May Influence Chemotherapy Efficacy. Cancers (Basel) 2021; 13:5362. [PMID: 34771529 PMCID: PMC8582451 DOI: 10.3390/cancers13215362] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/17/2021] [Accepted: 10/22/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Identification of prognostic biomarkers in cancers is a crucial step to improve overall survival (OS). Although mutations in tumour protein 53 (TP53) is prevalent in astrocytoma, the prognostic effects of TP53 mutation are unclear. METHODS In this retrospective study, we sequenced TP53 exons 1 to 10 in a cohort of 102 lower-grade glioma (LGG) subtypes and determined the prognostic effects of TP53 mutation in astrocytoma and oligodendroglioma. Publicly available datasets were analysed to confirm the findings. RESULTS In astrocytoma, mutations in TP53 codon 273 were associated with a significantly increased OS compared to the TP53 wild-type (HR (95% CI): 0.169 (0.036-0.766), p = 0.021). Public datasets confirmed these findings. TP53 codon 273 mutant astrocytomas were significantly more chemosensitive than TP53 wild-type astrocytomas (HR (95% CI): 0.344 (0.13-0.88), p = 0.0148). Post-chemotherapy, a significant correlation between TP53 and YAP1 mRNA was found (p = 0.01). In O (6)-methylguanine methyltransferase (MGMT) unmethylated chemotherapy-treated astrocytoma, both TP53 codon 273 and YAP1 mRNA were significant prognostic markers. In oligodendroglioma, TP53 mutations were associated with significantly decreased OS. CONCLUSIONS Based on these findings, we propose that certain TP53 mutant astrocytomas are chemosensitive through the involvement of YAP1, and we outline a potential mechanism. Thus, TP53 mutations may be key drivers of astrocytoma therapeutic efficacy and influence survival outcomes.
Collapse
Affiliation(s)
- Humaira Noor
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Nancy E. Briggs
- Stats Central, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2031, Australia;
| | - Kerrie L. McDonald
- Cure Brain Cancer Biomarkers and Translational Research Group, Prince of Wales Clinical School, University of New South Wales, Sydney, NSW 2031, Australia;
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
| | - Jeff Holst
- Adult Cancer Program, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia;
- Translational Cancer Metabolism Laboratory, School of Medical Sciences, Prince of Wales Clinical School, UNSW Sydney, Sydney, NSW 2031, Australia
| | - Orazio Vittorio
- School of Women’s & Children’s Health, UNSW Medicine, University of NSW, Randwick, NSW 2031, Australia;
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Randwick, NSW 2031, Australia
| |
Collapse
|
22
|
Jin X, Zhang D, Zhang W, Wang Y, Xiao Q, Huang S. Ratiometric electrochemical biosensor for ultrasensitive and highly selective detection of p53 gene based on nicking endonuclease-assisted target recycling and rolling circle amplification. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106461] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
|
24
|
Zhu G, Pan C, Bei JX, Li B, Liang C, Xu Y, Fu X. Mutant p53 in Cancer Progression and Targeted Therapies. Front Oncol 2020; 10:595187. [PMID: 33240819 PMCID: PMC7677253 DOI: 10.3389/fonc.2020.595187] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
TP53 is the most frequently mutated tumor suppressor gene in human cancer. The majority of mutations of p53 are missense mutations, leading to the expression of the full length p53 mutant proteins. Mutant p53 (Mutp53) proteins not only lose wild-type p53-dependent tumor suppressive functions, but also frequently acquire oncogenic gain-of-functions (GOF) that promote tumorigenesis. In this review, we summarize the recent advances in our understanding of the oncogenic GOF of mutp53 and the potential therapies targeting mutp53 in human cancers. In particular, we discuss the promising drugs that are currently under clinical trials as well as the emerging therapeutic strategies, including CRISPR/Cas9 based genome edition of mutant TP53 allele, small peptide mediated restoration of wild-type p53 function, and immunotherapies that directly eliminate mutp53 expressing tumor cells.
Collapse
Affiliation(s)
- Gaoyang Zhu
- Postdoctoral Research Center, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde), Foshan, China
| | - Chaoyun Pan
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jin-Xin Bei
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, China
| | - Bo Li
- Department of Biochemistry and Molecular Biology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chen Liang
- Shenzhen International Institute for Biomedical Research, Shenzhen, China
| | - Yang Xu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Xuemei Fu
- Department of Pediatrics, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
25
|
Kraus RJ, Cordes BLA, Sathiamoorthi S, Patel P, Yuan X, Iempridee T, Yu X, Lee DL, Lambert PF, Mertz JE. Reactivation of Epstein-Barr Virus by HIF-1α Requires p53. J Virol 2020; 94:e00722-20. [PMID: 32641480 PMCID: PMC7459560 DOI: 10.1128/jvi.00722-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/29/2020] [Indexed: 12/14/2022] Open
Abstract
We previously reported that the cellular transcription factor hypoxia-inducible factor 1α (HIF-1α) binds a hypoxia response element (HRE) located within the promoter of Epstein-Barr virus's (EBV's) latent-lytic switch BZLF1 gene, Zp, inducing viral reactivation. In this study, EBV-infected cell lines derived from gastric cancers and Burkitt lymphomas were incubated with HIF-1α-stabilizing drugs: the iron chelator deferoxamine (Desferal [DFO]), a neddylation inhibitor (pevonedistat [MLN-4924]), and a prolyl hydroxylase inhibitor (roxadustat [FG-4592]). DFO and MLN-4924, but not FG-4592, induced accumulation of both lytic EBV proteins and phosphorylated p53 in cell lines that contain a wild-type p53 gene. FG-4592 also failed to activate transcription from Zp in a reporter assay despite inducing accumulation of HIF-1α and transcription from another HRE-containing promoter. Unexpectedly, DFO failed to induce EBV reactivation in cell lines that express mutant or no p53 or when p53 expression was knocked down with short hairpin RNAs (shRNAs). Likewise, HIF-1α failed to activate transcription from Zp when p53 was knocked out by CRISPR-Cas9. Importantly, DFO induced binding of p53 as well as HIF-1α to Zp in chromatin immunoprecipitation (ChIP) assays, but only when the HRE was present. Nutlin-3, a drug known to induce accumulation of phosphorylated p53, synergized with DFO and MLN-4924 in inducing EBV reactivation. Conversely, KU-55933, a drug that inhibits ataxia telangiectasia mutated, thereby preventing p53 phosphorylation, inhibited DFO-induced EBV reactivation. Lastly, activation of Zp transcription by DFO and MLN-4924 mapped to its HRE. Thus, we conclude that induction of BZLF1 gene expression by HIF-1α requires phosphorylated, wild-type p53 as a coactivator, with HIF-1α binding recruiting p53 to Zp.IMPORTANCE EBV, a human herpesvirus, is latently present in most nasopharyngeal carcinomas, Burkitt lymphomas, and some gastric cancers. To develop a lytic-induction therapy for treating patients with EBV-associated cancers, we need a way to efficiently reactivate EBV into lytic replication. EBV's BZLF1 gene product, Zta, usually controls this reactivation switch. We previously showed that HIF-1α binds the BZLF1 gene promoter, inducing Zta synthesis, and HIF-1α-stabilizing drugs can induce EBV reactivation. In this study, we determined which EBV-positive cell lines are reactivated by classes of HIF-1α-stabilizing drugs. We found, unexpectedly, that HIF-1α-stabilizing drugs only induce reactivation when they also induce accumulation of phosphorylated, wild-type p53. Fortunately, p53 phosphorylation can also be provided by drugs such as nutlin-3, leading to synergistic reactivation of EBV. These findings indicate that some HIF-1α-stabilizing drugs may be helpful as part of a lytic-induction therapy for treating patients with EBV-positive malignancies that contain wild-type p53.
Collapse
MESH Headings
- Cell Line, Tumor
- Cyclopentanes/pharmacology
- Deferoxamine/pharmacology
- Enzyme Inhibitors/pharmacology
- Epithelial Cells/drug effects
- Epithelial Cells/metabolism
- Epithelial Cells/virology
- Gene Expression Regulation
- Glycine/analogs & derivatives
- Glycine/pharmacology
- Herpesvirus 4, Human/drug effects
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/growth & development
- Herpesvirus 4, Human/metabolism
- Host-Pathogen Interactions/drug effects
- Host-Pathogen Interactions/genetics
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/agonists
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Imidazoles/pharmacology
- Iron Chelating Agents/pharmacology
- Isoquinolines/pharmacology
- Lymphocytes/drug effects
- Lymphocytes/metabolism
- Lymphocytes/virology
- Morpholines/pharmacology
- Piperazines/pharmacology
- Prolyl-Hydroxylase Inhibitors/pharmacology
- Promoter Regions, Genetic
- Protein Binding/drug effects
- Pyrimidines/pharmacology
- Pyrones/pharmacology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Response Elements
- Signal Transduction
- Trans-Activators/genetics
- Trans-Activators/metabolism
- Tumor Suppressor Protein p53/antagonists & inhibitors
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Virus Activation/drug effects
Collapse
Affiliation(s)
- Richard J Kraus
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Blue-Leaf A Cordes
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Saraniya Sathiamoorthi
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Parita Patel
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Xueying Yuan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Tawin Iempridee
- National Nanotechnology Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Xianming Yu
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Denis L Lee
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Paul F Lambert
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Janet E Mertz
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
26
|
From cancer to rejuvenation: incomplete regeneration as the missing link (part II: rejuvenation circle). Future Sci OA 2020; 6:FSO610. [PMID: 32983567 PMCID: PMC7491027 DOI: 10.2144/fsoa-2020-0085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the first part of our study, we substantiated that the embryonic reontogenesis and malignant growth (disintegrating growth) pathways are the same, but occur at different stages of ontogenesis, this mechanism is carried out in opposite directions. Cancer has been shown to be epigenetic-blocked redifferentiation and unfinished somatic embryogenesis. We formulated that only this approach of aging elimination has real prospects for a future that is fraught with cancer, as we will be able to convert this risk into a rejuvenation process through the continuous cycling of cell dedifferentiation-differentiation processes (permanent remorphogenesis). Here, we continue to develop the idea of looped ontogenesis and formulate the concept of the rejuvenation circle.
Collapse
|
27
|
Agupitan AD, Neeson P, Williams S, Howitt J, Haupt S, Haupt Y. P53: A Guardian of Immunity Becomes Its Saboteur through Mutation. Int J Mol Sci 2020; 21:E3452. [PMID: 32414156 PMCID: PMC7278985 DOI: 10.3390/ijms21103452] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
Awareness of the importance of immunity in controlling cancer development triggered research into the impact of its key oncogenic drivers on the immune response, as well as their value as targets for immunotherapy. At the heart of tumour suppression is p53, which was discovered in the context of viral infection and now emerges as a significant player in normal and cancer immunity. Wild-type p53 (wt p53) plays fundamental roles in cancer immunity and inflammation. Mutations in p53 not only cripple wt p53 immune functions but also sinisterly subvert the immune function through its neomorphic gain-of-functions (GOFs). The prevalence of mutant p53 across different types of human cancers, which are associated with inflammatory and immune dysfunction, further implicates mutant p53 in modulating cancer immunity, thereby promoting tumorigenesis, metastasis and invasion. In this review, we discuss several mutant p53 immune GOFs in the context of the established roles of wt p53 in regulating and responding to tumour-associated inflammation, and regulating innate and adaptive immunity. We discuss the capacity of mutant p53 to alter the tumour milieu to support immune dysfunction, modulate toll-like receptor (TLR) signalling pathways to disrupt innate immunity and subvert cell-mediated immunity in favour of immune privilege and survival. Furthermore, we expose the potential and challenges associated with mutant p53 as a cancer immunotherapy target and underscore existing therapies that may benefit from inquiry into cancer p53 status.
Collapse
Affiliation(s)
- Arjelle Decasa Agupitan
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
| | - Paul Neeson
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Cancer Immunology Research, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia
| | - Scott Williams
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne 3000, Victoria, Australia;
| | - Jason Howitt
- School of Health Sciences, Swinburne University, Melbourne 3122, Victoria, Australia;
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville 3010, Victoria, Australia
| | - Sue Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
| | - Ygal Haupt
- Tumour Suppression Laboratory, Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne 3000, Victoria, Australia; (A.D.A.); (S.H.)
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville 3010, Victoria, Australia;
- Department of Clinical Pathology, University of Melbourne, Parkville 3010, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne 3800, Victoria, Australia
| |
Collapse
|
28
|
Wu JT, Lin CL, Huang CJ, Cheng YC, Chien CC, Sung YC. Potential synergistic effects of sorafenib and CP-31398 for treating anaplastic thyroid cancer with p53 mutations. Oncol Lett 2020; 19:3021-3026. [PMID: 32218859 DOI: 10.3892/ol.2020.11377] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Thyroid cancer is the most commonly diagnosed endocrine cancer. Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer and has a poor prognosis. Loss of p53 function has been reported to lead to poorly differentiated thyroid tumors; therefore, mutant p53 protein can be considered a crucial therapeutic target in patients with ATC. Sorafenib, a multi-kinase inhibitor, has been approved for the treatment of metastatic and differentiated thyroid cancer. Combined targeted therapy, including sorafenib, may be clinically significant for patients with ATC harboring p53 mutations. In the present study, CP-31398, a p53-restoring agent, was used to improve the therapeutic efficacy of sorafenib in SW579 cells, an ATC cell line harboring p53 mutations. The molecular function of CP-31398 was evaluated using western blot analysis and a luciferase reporter assay. The decreased viability of SW579 cells, following CP-31398 treatment, was augmented by sorafenib, and CP-31398 enhanced the antimitogenic effect of sorafenib; thus, sorafenib and CP-31398 synergistically inhibited the growth of SW579 cells. These results indicate a potential clinical application of CP-31398 for patients with ATC harboring p53 abnormalities, since these individuals generally respond poorly to sorafenib alone.
Collapse
Affiliation(s)
- Jiin-Torng Wu
- Division of Respiratory Therapy and Chest Medicine, Department of Internal Medicine, Cathay General Hospital, Taipei 11031, Taiwan, R.O.C
| | - Ching-Ling Lin
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Cathay General Hospital, Taipei 11031, Taiwan, R.O.C.,Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan, R.O.C
| | - Chi-Jung Huang
- Department of Medical Research, Cathay General Hospital, Taipei 11490, Taiwan, R.O.C.,Department of Biochemistry, National Defense Medical Center, Taipei 11490, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C
| | - Yu-Che Cheng
- Department of Medical Research, Cathay General Hospital, Taipei 11490, Taiwan, R.O.C.,School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Institute of Biomedical Engineering, Center for Biocellular Engineering, National Central University, Taoyuan 32001, Taiwan, R.O.C
| | - Chih-Cheng Chien
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Department of Anesthesiology, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| | - Yung-Chuan Sung
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan, R.O.C.,Division of Hematology/Oncology, Department of Internal Medicine, Cathay General Hospital, Taipei 10630, Taiwan, R.O.C
| |
Collapse
|
29
|
Transcription Factor p53 Suppresses Tumor Growth by Prompting Pyroptosis in Non-Small-Cell Lung Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8746895. [PMID: 31737176 PMCID: PMC6815571 DOI: 10.1155/2019/8746895] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 06/26/2019] [Accepted: 07/25/2019] [Indexed: 01/06/2023]
Abstract
Objective To evaluate the effect of p53 on pyroptosis and its inhibitory role on tumor growth in non-small-cell lung cancer (NSCLC). Methods The correlation of p53 and pyroptosis was determined in tumor tissues of NSCLC patients. The pyroptotic level was detected in A549 cells to clarify the effect of p53 on pyroptosis. p53 overexpression A549 tumor-bearing mice were used to clarify the therapeutic target of p53 in NSCLC treatment. Results p53 expression level was positively related to pyroptosis in NSCLC tissues. In in vitro assays, p53 directly regulated pyroptosis in A549 cells. p53-specific knockdown blocked lipopolysaccharide- (LPS-) induced pyroptosis. In in vivo assays, p53 overexpression in A549 markedly decreased tumor growth and death rate by increasing the pyroptotic level. Conclusions Upregulation of p53 prompts pyroptosis to produce anti-NSCLC effects suggesting the potential of p53 on suppressing tumor growth in NSCLC patients.
Collapse
|
30
|
Thoenen E, Curl A, Iwakuma T. TP53 in bone and soft tissue sarcomas. Pharmacol Ther 2019; 202:149-164. [PMID: 31276706 DOI: 10.1016/j.pharmthera.2019.06.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/25/2019] [Indexed: 12/13/2022]
Abstract
Genomic and functional study of existing and emerging sarcoma targets, such as fusion proteins, chromosomal aberrations, reduced tumor suppressor activity, and oncogenic drivers, is broadening our understanding of sarcomagenesis. Among these mechanisms, the tumor suppressor p53 (TP53) plays significant roles in the suppression of bone and soft tissue sarcoma progression. Although mutations in TP53 were thought to be relatively low in sarcomas, modern techniques including whole-genome sequencing have recently illuminated unappreciated alterations in TP53 in osteosarcoma. In addition, oncogenic gain-of-function activities of missense mutant p53 (mutp53) have been reported in sarcomas. Moreover, new targeting strategies for TP53 have been discovered: restoration of wild-type p53 (wtp53) activity through inhibition of TP53 negative regulators, reactivation of the wtp53 activity from mutp53, depletion of mutp53, and targeting of vulnerabilities in cells with TP53 deletions or mutations. These discoveries enable development of novel therapeutic strategies for therapy-resistant sarcomas. We have outlined nine bone and soft tissue sarcomas for which TP53 plays a crucial tumor suppressive role. These include osteosarcoma, Ewing sarcoma, chondrosarcoma, rhabdomyosarcoma (RMS), leiomyosarcoma (LMS), synovial sarcoma, liposarcoma (LPS), angiosarcoma, and undifferentiated pleomorphic sarcoma (UPS).
Collapse
Affiliation(s)
- Elizabeth Thoenen
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Amanda Curl
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA
| | - Tomoo Iwakuma
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66010, USA; Translational Laboratory Oncology Research, Children's Mercy Research Institute, Kansas City, MO 64108, USA.
| |
Collapse
|
31
|
KIBRA Team Up with Partners to Promote Breast Cancer Metastasis. Pathol Oncol Res 2019; 26:627-634. [DOI: 10.1007/s12253-019-00660-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
|
32
|
Sundar D, Yu Y, Katiyar SP, Putri JF, Dhanjal JK, Wang J, Sari AN, Kolettas E, Kaul SC, Wadhwa R. Wild type p53 function in p53 Y220C mutant harboring cells by treatment with Ashwagandha derived anticancer withanolides: bioinformatics and experimental evidence. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2019; 38:103. [PMID: 30808373 PMCID: PMC6390572 DOI: 10.1186/s13046-019-1099-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 02/11/2019] [Indexed: 12/15/2022]
Abstract
Background Tumor suppressor p53 protein is frequently mutated in a large majority of cancers. These mutations induce local or global changes in protein structure thereby affecting its binding to DNA. The structural differences between the wild type and mutant p53 thus provide an opportunity to selectively target mutated p53 harboring cancer cells. Restoration of wild type p53 activity in mutants using small molecules that can revert the structural changes have been considered for cancer therapeutics. Methods We used bioinformatics and molecular docking tools to investigate the structural changes between the wild type and mutant p53 proteins (p53V143A, p53R249S, p53R273H and p53Y220C) and explored the therapeutic potential of Withaferin A and Withanone for restoration of wild type p53 function in cancer cells. Cancer cells harboring the specific mutant p53 proteins were used for molecular assays to determine the mutant or wild type p53 functions. Results We found that p53V143A mutation does not show any significant structural changes and was also refractory to the binding of withanolides. p53R249S mutation critically disturbed the H-bond network and destabilized the DNA binding site. However, withanolides did not show any selective binding to either this mutant or other similar variants. p53Y220C mutation created a cavity near the site of mutation with local loss of hydrophobicity and water network, leading to functionally inactive conformation. Mutated structure could accommodate withanolides suggesting their conformational selectivity to target p53Y220C mutant. Using human cell lines containing specific p53 mutant proteins, we demonstrated that Withaferin A, Withanone and the extract rich in these withanolides caused restoration of wild type p53 function in mutant p53Y220C cells. This was associated with induction of p21WAF-1-mediated growth arrest/apoptosis. Conclusion The study suggested that withanolides may serve as highly potent anticancer compounds for treatment of cancers harboring a p53Y220C mutation. Electronic supplementary material The online version of this article (10.1186/s13046-019-1099-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Durai Sundar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Yue Yu
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jayarani F Putri
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Jaspreet Kaur Dhanjal
- DAILAB, Department of Biochemical Engineering & Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Jia Wang
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Anissa Nofita Sari
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan
| | - Evangelos Kolettas
- Laboratory of Biology, School of Medicine, Faculty of Health Sciences, University of Ioannina, and Biomedical Research Division, Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, 45110, Ioannina, Greece
| | - Sunil C Kaul
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| | - Renu Wadhwa
- DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science & Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki, 305 8565, Japan.
| |
Collapse
|