1
|
Wu Q, Shao H, Zhai W, Huang G, Liu J, Calais J, Wei W. Molecular imaging of renal cell carcinomas: ready for prime time. Nat Rev Urol 2024:10.1038/s41585-024-00962-z. [PMID: 39543358 DOI: 10.1038/s41585-024-00962-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2024] [Indexed: 11/17/2024]
Abstract
The clinical diagnosis of renal cell carcinoma (RCC) is constantly evolving. Diagnostic imaging of RCC relying on enhanced computed tomography (CT) and magnetic resonance imaging (MRI) is commonly used for renal mass characterization and assessment of tumour thrombosis, whereas pathology is the gold standard for establishing diagnosis. However, molecular imaging is rapidly improving the clinical management of RCC, particularly clear-cell RCC. Molecular imaging aids in the non-invasive visualization and characterization of specific biomarkers such as carbonic anhydrase IX and CD70 within the tumours, which help to assess tumour heterogeneity and status. Target-specific molecular imaging of RCCs will substantially improve the diagnostic landscape of RCC and will further facilitate clinical decision-making regarding initial staging and re-staging, monitoring of recurrence and metastasis, patient stratification and selection, and the prediction and evaluation of treatment responses.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hongda Shao
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhai
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jeremie Calais
- Ahmanson Translational Theranostics Division, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA, USA.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Jiang A, Li J, He Z, Liu Y, Qiao K, Fang Y, Qu L, Luo P, Lin A, Wang L. Renal cancer: signaling pathways and advances in targeted therapies. MedComm (Beijing) 2024; 5:e676. [PMID: 39092291 PMCID: PMC11292401 DOI: 10.1002/mco2.676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024] Open
Abstract
Renal cancer is a highlyheterogeneous malignancy characterized by rising global incidence and mortalityrates. The complex interplay and dysregulation of multiple signaling pathways,including von Hippel-Lindau (VHL)/hypoxia-inducible factor (HIF), phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR), Hippo-yes-associated protein (YAP), Wnt/ß-catenin, cyclic adenosine monophosphate (cAMP), and hepatocyte growth factor (HGF)/c-Met, contribute to theinitiation and progression of renal cancer. Although surgical resection is thestandard treatment for localized renal cancer, recurrence and metastasiscontinue to pose significant challenges. Advanced renal cancer is associatedwith a poor prognosis, and current therapies, such as targeted agents andimmunotherapies, have limitations. This review presents a comprehensiveoverview of the molecular mechanisms underlying aberrant signaling pathways inrenal cancer, emphasizing their intricate crosstalk and synergisticinteractions. We discuss recent advancements in targeted therapies, includingtyrosine kinase inhibitors, and immunotherapies, such as checkpoint inhibitors.Moreover, we underscore the importance of multiomics approaches and networkanalysis in elucidating the complex regulatory networks governing renal cancerpathogenesis. By integrating cutting-edge research and clinical insights, this review contributesto the development of innovative diagnostic and therapeutic strategies, whichhave the potential to improve risk stratification, precision medicine, andultimately, patient outcomes in renal cancer.
Collapse
Affiliation(s)
- Aimin Jiang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Jinxin Li
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ziwei He
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Ying Liu
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Kun Qiao
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Yu Fang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| | - Le Qu
- Department of UrologyJinling HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingChina
| | - Peng Luo
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Anqi Lin
- Department of OncologyZhujiang HospitalSouthern Medical UniversityGuangzhouGuangdongChina
| | - Linhui Wang
- Department of UrologyChanghai HospitalNaval Medical UniversityShanghaiChina
| |
Collapse
|
3
|
Wu Q, Wu Y, Zhang Y, Guan Y, Huang G, Xie F, Liu J, Zhai W, Wei W. ImmunoPET/CT imaging of clear cell renal cell carcinoma with [ 18F]RCCB6: a first-in-human study. Eur J Nucl Med Mol Imaging 2024; 51:2444-2457. [PMID: 38480552 DOI: 10.1007/s00259-024-06672-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/05/2024] [Indexed: 06/15/2024]
Abstract
PURPOSE The cluster of differentiation (CD70) is a potential biomarker of clear cell renal cell carcinoma (ccRCC). This study aims to develop CD70-targeted immuno-positron emission tomography/computed tomography (immunoPET/CT) imaging tracers and explore the diagnostic value in preclinical studies and the potential value in detecting metastases in ccRCC patients. METHODS Four novel CD70-specific single-domain antibodies (sdAbs) were produced and labelled with 18F by the aluminium fluoride restrained complexing agent (AlF-RESCA) method to develop radiotracers. The visualisation properties of the tracers were evaluated in a subcutaneous ccRCC patient-derived xenograft (PDX) model. In a registered prospective clinical trial (NCT06148220), six patients with pathologically confirmed RCC were included and underwent immunoPET/CT examination exploiting one of the developed tracers (i.e., [18F]RCCB6). RESULTS We engineered four sdAbs (His-tagged RCCB3 and RCCB6, His-tag-free RB3 and RB6) specifically targeting recombinant human CD70 without cross-reactivity to murine CD70. ImmunoPET/CT imaging with [18F]RCCB3 and [18F]RCCB6 demonstrated a high tumour-to-background ratio in a subcutaneous ccRCC PDX model, with the latter showing better diagnostic potential supported by higher tumour uptake and lower bone accumulation. In comparison, [18F]RB6, developed by sequence optimisation, has significantly lower kidney accumulation than that of [18F]RCCB6. In a pilot translational study, [18F]RCCB6 immunoPET/CT displayed ccRCC metastases in multiple patients and demonstrated improved imaging contrast and diagnostic value than 18F-FDG PET/CT in a patient with ccRCC. CONCLUSION The work successfully developed a series of CD70-targeted immunoPET/CT imaging tracers. Of them, [18F]RCCB6 clearly and specifically identified inoculated ccRCCs in preclinical studies. Clinical translation of [18F]RCCB6 suggests potential for identifying recurrence and/or metastasis in ccRCC patients.
Collapse
Affiliation(s)
- Qianyun Wu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Yanfei Wu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - You Zhang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Gang Huang
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jianjun Liu
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| | - Weijun Wei
- Department of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd, Shanghai, 200127, China.
| |
Collapse
|
4
|
Pal SK, Tran B, Haanen JB, Hurwitz ME, Sacher A, Tannir NM, Budde LE, Harrison SJ, Klobuch S, Patel SS, Meza L, Dequeant ML, Ma A, He QA, Williams LM, Keegan A, Gurary EB, Dar H, Karnik S, Guo C, Heath H, Yuen RR, Morrow PK, Agarwal N, Srour SA. CD70-Targeted Allogeneic CAR T-Cell Therapy for Advanced Clear Cell Renal Cell Carcinoma. Cancer Discov 2024; 14:1176-1189. [PMID: 38583184 PMCID: PMC11215406 DOI: 10.1158/2159-8290.cd-24-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/08/2024] [Accepted: 03/22/2024] [Indexed: 04/09/2024]
Abstract
Therapeutic approaches for clear cell renal cell carcinoma (ccRCC) remain limited; however, chimeric antigen receptor (CAR) T-cell therapies may offer novel treatment options. CTX130, an allogeneic CD70-targeting CAR T-cell product, was developed for the treatment of advanced or refractory ccRCC. We report that CTX130 showed favorable preclinical proliferation and cytotoxicity profiles and completely regressed RCC xenograft tumors. We also report results from 16 patients with relapsed/refractory ccRCC who received CTX130 in a phase I, multicenter, first-in-human clinical trial. No patients encountered dose-limiting toxicity, and disease control was achieved in 81.3% of patients. One patient remains in a durable complete response at 3 years. Finally, we report on a next-generation CAR T construct, CTX131, in which synergistic potency edits to CTX130 confer improved expansion and efficacy in preclinical studies. These data represent a proof of concept for the treatment of ccRCC and other CD70+ malignancies with CD70- targeted allogeneic CAR T cells. Significance: Although the role of CAR T cells is well established in hematologic malignancies, the clinical experience in solid tumors has been disappointing. This clinical trial demonstrates the first complete response in a patient with RCC, reinforcing the potential benefit of CAR T cells in the treatment of solid tumors.
Collapse
Affiliation(s)
- Sumanta K. Pal
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Ben Tran
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | - John B.A.G. Haanen
- Netherlands Cancer Institute, Amsterdam, the Netherlands.
- Leiden University Medical Center, Leiden, the Netherlands.
- Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | | | - Adrian Sacher
- Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.
- Departments of Medicine and Immunology, University of Toronto, Toronto, Canada.
| | - Nizar M. Tannir
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Lihua E. Budde
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | - Simon J. Harrison
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia.
| | | | - Sagar S. Patel
- Division of Hematology and Hematologic Malignancies, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Luis Meza
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, California.
| | | | - Anna Ma
- CRISPR Therapeutics, Boston, Massachusetts.
| | | | | | | | - Ellen B. Gurary
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | - Henia Dar
- CRISPR Therapeutics, Boston, Massachusetts.
| | | | - Changan Guo
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | | | | | - Phuong K. Morrow
- Formerly employed by CRISPR Therapeutics, Boston, Massachusetts.
| | - Neeraj Agarwal
- Division of Medical Oncology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.
| | - Samer A. Srour
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
5
|
Sganga S, Riondino S, Iannantuono GM, Rosenfeld R, Roselli M, Torino F. Antibody-Drug Conjugates for the Treatment of Renal Cancer: A Scoping Review on Current Evidence and Clinical Perspectives. J Pers Med 2023; 13:1339. [PMID: 37763107 PMCID: PMC10532725 DOI: 10.3390/jpm13091339] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody-drug conjugates (ADCs) are complex chemical structures composed of a monoclonal antibody, serving as a link to target cells, which is conjugated with a potent cytotoxic drug (i.e., payload) through a chemical linker. Inspired by Paul Ehrlich's concept of the ideal anticancer drug as a "magic bullet", ADCs are also highly specific anticancer agents, as they have been demonstrated to recognize, bind, and neutralize cancer cells, limiting injuries to normal cells. ADCs are among the newest pharmacologic breakthroughs in treating solid and hematologic malignancies. Indeed, in recent years, various ADCs have been approved by the Food and Drug Administration and European Medicines Agency for the treatment of several cancers, resulting in a "practice-changing" approach. However, despite these successes, no ADC is approved for treating patients affected by renal cell carcinoma (RCC). In the present paper, we thoroughly reviewed the current literature and summarized preclinical studies and clinical trials that evaluated the activity and toxicity profile of ADCs in RCC patients. Moreover, we scrutinized the potential causes that, until now, hampered the therapeutical success of ADCs in those patients. Finally, we discussed novel strategies that would improve the development of ADCs and their efficacy in treating RCC patients.
Collapse
Affiliation(s)
| | | | | | | | | | - Francesco Torino
- Medical Oncology Unit, Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy; (S.S.); (S.R.); (G.M.I.); (R.R.); (M.R.)
| |
Collapse
|
6
|
Kong F, Ye Q, Xiong Y. Comprehensive analysis of prognosis and immune function of CD70-CD27 signaling axis in pan-cancer. Funct Integr Genomics 2023; 23:48. [PMID: 36700974 DOI: 10.1007/s10142-023-00977-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/08/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The immune checkpoint molecule CD70 and its receptor CD27 constitute the signal transduction axis, which is abnormally expressed in many solid tumors and is crucial for T cell co-stimulation and immune escape. Tumor cells regulate CD27 expression in the tumor microenvironment by expressing CD70, which promotes immune escape. Although current research evidence suggests a link between CD70 and tumors, no pan-cancer analysis is available. Using the Cancer Genome Atlas, Gene Expression Omnibus datasets, and online databases, we first explored the potential carcinogenic role of the CD70-CD27 signaling axis in human malignancies. Furthermore, qRT-PCR, Western blot, immunohistochemistry, and a T cell-mediated tumor cell killing assay were used to assess the biological function of the CD70-CD27 signaling axis. CD70 expression is upregulated in most cancers and has an obvious correlation with the prognosis of tumor patients. The expression of CD70 and CD27 is associated with the level of regulatory T cell (Treg) infiltration. In addition, T cell receptor signaling pathways, PI3K-AKT, NF-κB, and TNF signaling pathways are also involved in CD70-mediated immune escape. CD70 mainly regulates tumor immune escape by regulating T cell-mediated tumor killing, with Tregs possibly being its primary T cell subset. Our first pan-cancer study provides a relatively comprehensive understanding of the carcinogenic role of the CD70-CD27 signaling axis in different tumors.
Collapse
Affiliation(s)
- Fanhua Kong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
- The 3rd Xiangya Hospital of Central South University, Research Center of National Health Ministry on Transplantation Medicine Engineering and Technology, Changsha, 410013, China.
| | - Yan Xiong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Clinical Research Center for Natural Polymer Biological Liver, Hubei Engineering Center of Natural Polymer-based Medical Materials, Wuhan, 430071, Hubei, China.
| |
Collapse
|
7
|
Maecker H, Jonnalagadda V, Bhakta S, Jammalamadaka V, Junutula JR. Exploration of the antibody-drug conjugate clinical landscape. MAbs 2023; 15:2229101. [PMID: 37639687 PMCID: PMC10464553 DOI: 10.1080/19420862.2023.2229101] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 08/31/2023] Open
Abstract
The antibody-drug conjugate (ADC) field has undergone a renaissance, with substantial recent developmental investment and subsequent drug approvals over the past 6 y. In November 2022, ElahereTM became the latest ADC to be approved by the US Food and Drug Administration (FDA). To date, over 260 ADCs have been tested in the clinic against various oncology indications. Here, we review the clinical landscape of ADCs that are currently FDA approved (11), agents currently in clinical trials but not yet approved (164), and candidates discontinued following clinical testing (92). These clinically tested ADCs are further analyzed by their targeting tumor antigen(s), linker, payload choices, and highest clinical stage achieved, highlighting limitations associated with the discontinued drug candidates. Lastly, we discuss biologic engineering modifications preclinically demonstrated to improve the therapeutic index that if incorporated may increase the proportion of molecules that successfully transition to regulatory approval.
Collapse
|
8
|
Lyou Y, Dorff TB. Chimeric Antigen Receptor (CAR) T-cell Treatment in Renal Cell Carcinoma: Current clinical trials and future directions. KIDNEY CANCER 2022. [DOI: 10.3233/kca-220001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Renal cell carcinoma (RCC) has long been found to be responsive to immunotherapy. While high dose interleukin-2 resulted in some durable remissions, this treatment has largely been replaced by immune checkpoint inhibitor therapy, due to the safer toxicity profile and emerging evidence for long term remissions. However, the majority of patients continue to face disease progression and death from metastatic RCC. Chimeric antigen receptor T-cells (CAR T) represent the next step in immunotherapy for this malignancy and hold promise for a higher rate of durable remissions. The realization of this therapeutic strategy for RCC will require identification of the best tumor antigen and T cell modifications and will depend on achieving remissions with an acceptable toxicity profile. This review summarizes current CAR T-cell treatment targets and clinical trials for metastatic RCC, highlighting the potential therapeutic impact as well as obstacles to successful development.
Collapse
Affiliation(s)
- Yung Lyou
- Department of Hematology-Oncology, Providence St. Jude Crosson Cancer Institute, Fullerton, CA, USA
| | - Tanya B. Dorff
- Department of Medical Oncology and Experimental Therapeutics, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| |
Collapse
|
9
|
Hayashi T, Hinata N. Current status and future prospects of antibody-drug conjugates in urological malignancies. Int J Urol 2022; 29:1100-1108. [PMID: 35581739 DOI: 10.1111/iju.14925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/25/2022] [Indexed: 12/16/2022]
Abstract
Antibody-drug conjugates represent a promising new treatment option that uses the targeting ability of an antibody to deliver cytotoxic drugs directly to tumors. Antibody-drug conjugates provide the opportunity to deliver drugs to antigen-expressing cancer cells while minimizing toxicity to normal tissue, achieving wider therapeutic windows. To date, three antibody-drug conjugates have been approved by the US Food and Drug Administration, and many antibody-drug conjugates are under clinical development for urological malignancies. In this paper, we review the mechanism, history, and development of antibody-drug conjugates, and review the current landscape of antibody-drug conjugates in urological malignancies including 12 targets and 18 antibody-drug conjugates in prostate cancer, renal cancer, and urothelial cancer. Furthermore, we review the rational combination of antibody-drug conjugates with immune checkpoint inhibitors and consider future prospects to enhance the therapeutic activity of antibody-drug conjugates in urological malignancies.
Collapse
Affiliation(s)
- Tetsutaro Hayashi
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| | - Nobuyuki Hinata
- Department of Urology, Hiroshima University Graduate School of Biomedical and Health Science, Hiroshima, Japan
| |
Collapse
|
10
|
Flieswasser T, Van den Eynde A, Van Audenaerde J, De Waele J, Lardon F, Riether C, de Haard H, Smits E, Pauwels P, Jacobs J. The CD70-CD27 axis in oncology: the new kids on the block. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:12. [PMID: 34991665 PMCID: PMC8734249 DOI: 10.1186/s13046-021-02215-y] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/06/2021] [Indexed: 12/15/2022]
Abstract
The immune checkpoint molecule CD70 and its receptor CD27 are aberrantly expressed in many hematological and solid malignancies. Dysregulation of the CD70-CD27 axis within the tumor and its microenvironment is associated with tumor progression and immunosuppression. This is in contrast to physiological conditions, where tightly controlled expression of CD70 and CD27 plays a role in co-stimulation in immune responses. In hematological malignancies, cancer cells co-express CD70 and CD27 promoting stemness, proliferation and survival of malignancy. In solid tumors, only expression of CD70 is present on the tumor cells which can facilitate immune evasion through CD27 expression in the tumor microenvironment. The discovery of these tumor promoting and immunosuppressive effects of the CD70-CD27 axis has unfolded a novel target in the field of oncology, CD70. In this review, we thoroughly discuss current insights into expression patterns and the role of the CD70-CD27 axis in hematological and solid malignancies, its effect on the tumor microenvironment and (pre)clinical therapeutic strategies.
Collapse
Affiliation(s)
- Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium. .,Department of Pathology, Antwerp University Hospital, Edegem, Belgium.
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Jonas Van Audenaerde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium
| | - Carsten Riether
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Julie Jacobs
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Wilrijk, Belgium.,Argenx, Zwijnaarde, Ghent, Belgium
| |
Collapse
|
11
|
Jin Y, Schladetsch MA, Huang X, Balunas MJ, Wiemer AJ. Stepping forward in antibody-drug conjugate development. Pharmacol Ther 2022; 229:107917. [PMID: 34171334 PMCID: PMC8702582 DOI: 10.1016/j.pharmthera.2021.107917] [Citation(s) in RCA: 82] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 01/03/2023]
Abstract
Antibody-drug conjugates (ADCs) are cancer therapeutic agents comprised of an antibody, a linker and a small-molecule payload. ADCs use the specificity of the antibody to target the toxic payload to tumor cells. After intravenous administration, ADCs enter circulation, distribute to tumor tissues and bind to the tumor surface antigen. The antigen then undergoes endocytosis to internalize the ADC into tumor cells, where it is transported to lysosomes to release the payload. The released toxic payloads can induce apoptosis through DNA damage or microtubule inhibition and can kill surrounding cancer cells through the bystander effect. The first ADC drug was approved by the United States Food and Drug Administration (FDA) in 2000, but the following decade saw no new approved ADC drugs. From 2011 to 2018, four ADC drugs were approved, while in 2019 and 2020 five more ADCs entered the market. This demonstrates an increasing trend for the clinical development of ADCs. This review summarizes the recent clinical research, with a specific focus on how the in vivo processing of ADCs influences their design. We aim to provide comprehensive information about current ADCs to facilitate future development.
Collapse
Affiliation(s)
- Yiming Jin
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Megan A Schladetsch
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Xueting Huang
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Marcy J Balunas
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA
| | - Andrew J Wiemer
- Division of Medicinal Chemistry, Department of Pharmaceutical Sciences, University of Connecticut, Storrs, CT 06269, USA; Institute for Systems Genomics, University of Connecticut, Storrs, CT 06269, USA.
| |
Collapse
|
12
|
Starzer AM, Berghoff AS. New emerging targets in cancer immunotherapy: CD27 (TNFRSF7). ESMO Open 2020; 4:e000629. [PMID: 32152062 PMCID: PMC7082637 DOI: 10.1136/esmoopen-2019-000629] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/02/2020] [Accepted: 02/05/2020] [Indexed: 02/06/2023] Open
Abstract
Cluster of differentiation 27 (CD27) is a member of the tumour necrosis factor receptor superfamily and plays a key role in T-cell activation by providing a costimulatory signal. Bound to its natural ligand CD70, CD27 signalling enhances T-cell proliferation and differentiation to effector and memory T cells and therefore has potential as an immune modulatory target in cancer treatment. The CD27 agonistic antibody varlilumab showed promising efficacy in haematological as well as solid cancers. Current studies investigate the combination of the CD27 agonistic antibody varlilumab in combination with the PD1 axis targeting immune checkpoint inhibitors like nivolumab or atezolizumab. Further, CD70 expression is used as a therapeutic target for ADCs, antibodies inducing ADCC, as well as the immunological target for chimeric antigen receptor gene-modified T cells and specific dendritic cell vaccination. In line with this, targeting the CD27 axis was shown to be feasible and safe in early clinical trials with the most commonly occurring side effects being thrombocytopenia, fatigue and nausea. In this mini review, we aimed to elucidate the immunobiology of CD27 and its potential as a target in cancer immunotherapy.
Collapse
Affiliation(s)
- Angelika M Starzer
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Anna S Berghoff
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria; Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Chaudhari R, Fong LW, Tan Z, Huang B, Zhang S. An up-to-date overview of computational polypharmacology in modern drug discovery. Expert Opin Drug Discov 2020; 15:1025-1044. [PMID: 32452701 PMCID: PMC7415563 DOI: 10.1080/17460441.2020.1767063] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/06/2020] [Indexed: 12/30/2022]
Abstract
INTRODUCTION In recent years, computational polypharmacology has gained significant attention to study the promiscuous nature of drugs. Despite tremendous challenges, community-wide efforts have led to a variety of novel approaches for predicting drug polypharmacology. In particular, some rapid advances using machine learning and artificial intelligence have been reported with great success. AREAS COVERED In this article, the authors provide a comprehensive update on the current state-of-the-art polypharmacology approaches and their applications, focusing on those reports published after our 2017 review article. The authors particularly discuss some novel, groundbreaking concepts, and methods that have been developed recently and applied to drug polypharmacology studies. EXPERT OPINION Polypharmacology is evolving and novel concepts are being introduced to counter the current challenges in the field. However, major hurdles remain including incompleteness of high-quality experimental data, lack of in vitro and in vivo assays to characterize multi-targeting agents, shortage of robust computational methods, and challenges to identify the best target combinations and design effective multi-targeting agents. Fortunately, numerous national/international efforts including multi-omics and artificial intelligence initiatives as well as most recent collaborations on addressing the COVID-19 pandemic have shown significant promise to propel the field of polypharmacology forward.
Collapse
Affiliation(s)
- Rajan Chaudhari
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Long Wolf Fong
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030, United States
| | - Zhi Tan
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Beibei Huang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
| | - Shuxing Zhang
- Intelligent Molecular Discovery Laboratory, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, Texas 77030, United States
- MD Anderson UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Avenue, Houston, Texas 77030, United States
| |
Collapse
|
14
|
Abstract
PURPOSE OF REVIEW Due to the rapidly changing field of kidney cancer therapeutics, addressing the state of the art systemic therapy regimens, and sequencing with cytoreductive nephrectomy are the primary focus of this review. We will also discuss the role of biomarkers and novel therapeutic targets in the management of renal cell carcinoma. RECENT FINDINGS The management of metastatic renal cell cancer has undergone a paradigm shift with immune checkpoint inhibitors being used in the frontline setting. Over the last 4 years, programmed cell death-1 (PD-1) inhibitors as well as programmed cell death ligand-1 inhibitors have become available in various combinations with cytotoxic T lymphocyte-associated protein-4 (CTLA-4) inhibitors and tyrosine kinase inhibitors (TKIs). These drugs have improved outcomes in patients with renal cell cancer and more work is being done to refine these targets as well as discover newer ones. Despite the availability of several new treatment options, some questions that still need to be addressed in the management of kidney cancer include the sequencing of treatment options, treatment of patients who progress on immune checkpoint inhibitors, and role of biomarkers to ascertain the best treatment options to minimize costs and improve outcomes.
Collapse
|