1
|
Taeb S, Rostamzadeh D, Amini SM, Rahmati M, Eftekhari M, Safari A, Najafi M. MicroRNAs targeted mTOR as therapeutic agents to improve radiotherapy outcome. Cancer Cell Int 2024; 24:233. [PMID: 38965615 PMCID: PMC11229485 DOI: 10.1186/s12935-024-03420-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 06/22/2024] [Indexed: 07/06/2024] Open
Abstract
MicroRNAs (miRNAs) are small RNA molecules that regulate genes and are involved in various biological processes, including cancer development. Researchers have been exploring the potential of miRNAs as therapeutic agents in cancer treatment. Specifically, targeting the mammalian target of the rapamycin (mTOR) pathway with miRNAs has shown promise in improving the effectiveness of radiotherapy (RT), a common cancer treatment. This review provides an overview of the current understanding of miRNAs targeting mTOR as therapeutic agents to enhance RT outcomes in cancer patients. It emphasizes the importance of understanding the specific miRNAs that target mTOR and their impact on radiosensitivity for personalized cancer treatment approaches. The review also discusses the role of mTOR in cell homeostasis, cell proliferation, and immune response, as well as its association with oncogenesis. It highlights the different ways in which miRNAs can potentially affect the mTOR pathway and their implications in immune-related diseases. Preclinical findings suggest that combining mTOR modulators with RT can inhibit tumor growth through anti-angiogenic and anti-vascular effects, but further research and clinical trials are needed to validate the efficacy and safety of using miRNAs targeting mTOR as therapeutic agents in combination with RT. Overall, this review provides a comprehensive understanding of the potential of miRNAs targeting mTOR to enhance RT efficacy in cancer treatment and emphasizes the need for further research to translate these findings into improved clinical outcomes.
Collapse
Affiliation(s)
- Shahram Taeb
- Department of Radiology, School of Paramedical Sciences, Guilan University of Medical Sciences, Rasht, Iran
| | - Davoud Rostamzadeh
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Seyed Mohammad Amini
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Rahmati
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Eftekhari
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Arash Safari
- Department of Radiology, Ionizing and Non-Ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, 71439-14693, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
2
|
An L, Li M, Jia Q. Mechanisms of radiotherapy resistance and radiosensitization strategies for esophageal squamous cell carcinoma. Mol Cancer 2023; 22:140. [PMID: 37598158 PMCID: PMC10439611 DOI: 10.1186/s12943-023-01839-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 08/02/2023] [Indexed: 08/21/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the sixth most common cause of cancer-related mortality worldwide, with more than half of them occurred in China. Radiotherapy (RT) has been widely used for treating ESCC. However, radiation-induced DNA damage response (DDR) can promote the release of cytokines and chemokines, and triggers inflammatory reactions and changes in the tumor microenvironment (TME), thereby inhibiting the immune function and causing the invasion and metastasis of ESCC. Radioresistance is the major cause of disease progression and mortality in cancer, and it is associated with heterogeneity. Therefore, a better understanding of the radioresistance mechanisms may generate more reversal strategies to improve the cure rates and survival periods of ESCC patients. We mainly summarized the possible mechanisms of radioresistance in order to reveal new targets for ESCC therapy. Then we summarized and compared the current strategies to reverse radioresistance.
Collapse
Affiliation(s)
- Lingbo An
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China
- College of Medical Technology, Xi'an Medical University, Xi'an, China
| | - Mingyang Li
- State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital and School of Basic Medicine, Fourth Military Medical University, Xi'an, China.
| | - Qingge Jia
- Department of Reproductive Medicine, Xi'an International Medical Center Hospital, Northwest University, Xi'an, China.
| |
Collapse
|
3
|
Xu K, Guo H, Xia A, Wang Z, Wang S, Wang Q. Non-coding RNAs in radiotherapy resistance: Roles and therapeutic implications in gastrointestinal cancer. Biomed Pharmacother 2023; 161:114485. [PMID: 36917887 DOI: 10.1016/j.biopha.2023.114485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/19/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
Radiotherapy has become an indispensable and conventional means for patients with advanced solid tumors including gastrointestinal cancer. However, innate or acquired radiotherapy resistance remains a significant challenge and greatly limits the therapeutic effect, which results in cancer relapse and poor prognosis. Therefore, it is an urgent need to identify novel biomarkers and therapeutic targets for clarify the biological characteristics and mechanism of radiotherapy resistance. Recently, lots of studies have revealed that non-coding RNAs (ncRNAs) are the potential indicators and regulators of radiotherapy resistance via the mediation of various targets/pathways in different cancers. These findings may serve as a potential therapeutic strategy to overcome radiotherapy resistance. In this review, we will shed light on the recent findings regarding the functions and regulatory mechanisms of ncRNAs following radiotherapy, and comprehensively discuss their potential as biomarkers and therapeutic targets in radiotherapy resistance of gastrointestinal cancer.
Collapse
Affiliation(s)
- Kaiyue Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Department of Radiation Oncology, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing University Medical School, Suzhou 215000, China
| | - Huimin Guo
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Anliang Xia
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China
| | - Zhangding Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China.
| | - Shouyu Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210000, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing 210093, China.
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China; Medical Transformation Research Institute, The First Affiliated Hospital of Anhui Medical University, Hefei 230000, China.
| |
Collapse
|
4
|
Guo Y, Wang L, Yang H, Ding N. Knockdown long non-coding RNA HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation. Bioengineered 2022; 13:884-893. [PMID: 34969363 PMCID: PMC8805942 DOI: 10.1080/21655979.2021.2014386] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Recently, long noncoding RNAs (lncRNAs) have been revealed to participate in cancer therapy. Especial in tumor radiotherapy, lncRNAs usually could enhance or restrict the radiosensitivity in different ways. LncRNA HCP5 is highly expressed in esophageal cancer and influenced the malignant behaviors of esophageal cancer cells. However, this study dedicates to clarify if lncRNA HCP5 affects the radiosensitivity of esophageal carcinoma. The expression levels of HCP5 in esophageal cancer and adjacent noncancerous tissue were first analyzed on the TCGA database and then detected by qRT-PCR. The related functional experiments were used to investigate whether the radiosensitivity of esophageal squamous cell carcinoma was affected by the inhibition of HCP5. The expression results showed HCP5 is upregulated in esophageal cancers compared to the normal tissues. Meanwhile, knockdown HCP5 further suppressed the proliferation and promoted the apoptosis of esophageal cancer cells treated with a 2 Gy dose of radiotherapy. Moreover, we uncovered that knockdown HCP5 eliminated radiotherapy resistance by modulating the miR-216a-3p/PDK1 axis to inhibit the AKT activation. Finally, rescue experiments pointed that lowering the miR-216a-3p expression weakened the inhibition effect of knockdown HCP5 on cells treated with radiotherapy. To summary, our results indicate that HCP5 is involved in esophageal carcinoma radiotherapy and knockdown HCP5 enhances the radiosensitivity of esophageal carcinoma by modulating AKT signaling activation.
Collapse
Affiliation(s)
- Yue Guo
- Hematology Department, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Lan Wang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Hui Yang
- Department of Anesthesiology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, China
| | - Nannan Ding
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated of Hubei University of Arts and Science, Xiangyang, China
| |
Collapse
|
5
|
Liu Z, Lu X, Wen L, You C, Jin X, Liu J. Hsa_circ_0014879 regulates the radiosensitivity of esophageal squamous cell carcinoma through miR-519-3p/CDC25A axis. Anticancer Drugs 2022; 33:e349-e361. [PMID: 34407051 DOI: 10.1097/cad.0000000000001213] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Circular RNAs (circRNAs) play critical roles in regulating the radiosensitivity of various cancers, including esophageal squamous cell carcinoma (ESCC). This research aimed to explore the role and potential mechanism of hsa_circ_0014879 in regulating ESCC radioresistance. The levels of hsa_circ_0014879, microRNA-519-3p (miR-519-3p) and cell division cycle 25A (CDC25A) were measured using quantitative real-time PCR or western blot. Cell proliferation was evaluated by colony formation assay. Cell migration and invasion were assessed by transwell and scratch assays. The levels of epithelial-mesenchymal transition (EMT)-related proteins were detected by western blot. Xenograft assay was used to analyze the effect of hsa_circ_0014879 on radiosensitivity in vivo. The binding relationship among hsa_circ_0014879, miR-519-3p and CDC25A was confirmed by dual-luciferase reporter assay. Hsa_circ_0014879 and CDC25A were upregulated, whereas miR-519-3p was downregulated in radio-resistant ESCC tissues and cells. Depletion of hsa_circ_0014879 suppressed the proliferation, migration and invasion of radio-resistant ESCC cells. Hsa_circ_0014879 knockdown elevated radiosensitivity of radio-resistant cells by modulating miR-519-3p. Moreover, miR-519-3p enhanced the radiosensitivity of radio-resistant cells by targeting CDC25A. Also, hsa_circ_0014879 upregulated CDC25A via sponging miR-519-3p. Hsa_circ_0014879 silencing enhanced the radiosensitivity of ESCC via regulating the miR-519-3p/CDC25A pathway.
Collapse
Affiliation(s)
- Zihao Liu
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Xiyan Lu
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Linchun Wen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou
| | - Chuanwen You
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Xiaowei Jin
- Department of Oncology, The Affiliated Suqian Hospital of Xuzhou Medical University, Suqian
| | - Jingying Liu
- Department of Anesthesiology, The Affiliated Suqian First People's Hospital of Nanjing Medical University, Suqian, Jiangsu, China
| |
Collapse
|
6
|
Cucurbitacin E inhibits esophageal carcinoma cell proliferation, migration, and invasion by suppressing Rac1 expression through PI3K/AKT/mTOR pathway. Anticancer Drugs 2021; 31:847-855. [PMID: 32568828 DOI: 10.1097/cad.0000000000000961] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
As an oxygenated tetracyclic triterpenoid, Cucurbitacin E (CuE) possesses potential antitumor properties in sorts of malignancies. However, its effect on human esophageal carcinoma cells has not been previously unearthed, and the mechanism underlying its anticarcinoma activity remains vague. Hence, this study was arranged to probe the function of CuE on esophageal carcinoma cells and its specific mechanism. Human esophageal carcinoma cells (ECA109 and EC9706) and human normal esophageal epithelial cells (Het-1A) were selected for subsequent experiments. The expression levels of Rac1 in esophageal carcinoma cells were measured. After transfection of sh-Rac1 or pCDNA3.1-Rac1, esophageal carcinoma cells were exposed to CuE. Then, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and 5-ethynyl-2'-deoxyuridine staining were utilized for measurement of cell proliferation ability, cell scratch assay for inspection of cell migration rate, and Transwell for detection of cell invasion ability. The phosphorylation levels of protein kinase B and mTOR were analyzed by Western blot. Rac1 was highly expressed in esophageal carcinoma cells. Transfection of sh-Rac1 in esophageal carcinoma cells resulted in suppression on cell proliferation, migration, and invasion, as well as downregulated phosphorylation levels of AKT and mammalian target of rapamycin (mTOR) in esophageal carcinoma cells, while transfection of pCDNA3.1-Rac1 had an opposite effect, implicating that Rac1 can promote the viability of esophageal carcinoma cells. Esophageal carcinoma cells subjected to CuE treatment had decreased expression of Rac1, suppressed cell viability, and decreased phosphorylation levels of AKT and mTOR. Transfection of pCDNA3.1-Rac1 and CuE treatment in esophageal carcinoma cells enhanced viability of esophageal carcinoma cells and promoted the phosphorylation levels of AKT and mTOR in comparison with cells treated with CuE alone. CuE inhibits proliferation, invasion, and migration of esophageal carcinoma cells via downregulating Rac1 to block the phosphoinositide 3-kinase/AKT/mTOR pathway.
Collapse
|
7
|
Ma Z, Dong Z, Yu D, Mu M, Feng W, Guo J, Cheng B, Guo J, Ma J. IL-32 Promotes the Radiosensitivity of Esophageal Squamous Cell Carcinoma Cell through STAT3 Pathway. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653747. [PMID: 33681363 PMCID: PMC7904356 DOI: 10.1155/2021/6653747] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 12/30/2020] [Indexed: 12/28/2022]
Abstract
OBJECTIVE This study is set out to determine the relationship between IL-32 and radiosensitivity of esophageal squamous cell carcinoma (ESCC). METHODS Western blot was adopted for measuring IL-32 expression in Eca-109 and TE-10 cells. Eca-109 and TE-10 cells with interference or overexpression of IL-32 were treated with the presence or absence of X-ray irradiation. Then, the use of CCK8 assay was to detect proliferation ability, and effects of IL-32 expression on radiosensitivity of ESCC were tested by colony formation assay. The cell apoptosis was detected using flow cytometry. STAT3 and p-STAT expression, and apoptotic protein Bax were detected by western blot. RESULTS Colony formation assay and CCK8 assay showed that compared with the NC group without treatment, the growth of the ESCC cells, that is Eca-109 and TE-10, was significantly inhibited in the OE+IR group with highly expressed IL-32 and irradiation. In flow cytometry analysis, in Eca-109 and TE-10 cells, highly expressed IL-32 combined with irradiation significantly increased apoptosis compared with the control group. Highly expressed IL-32 has a synergistic effect with irradiation, inhibiting STAT3 and p-STAT3 expression and increasing apoptotic protein Bax expression. CONCLUSION IL-32 can improve the radiosensitivity of ESCC cells by inhibiting the STAT3 pathway. Therefore, IL-32 can be used as a new therapeutic target to provide a new attempt for radiotherapy of ESCC.
Collapse
Affiliation(s)
- Zhiyu Ma
- First Department of Radiotherapy, Wanbei Coal-Electricity Group General Hospital, Suzhou, 234000 Anhui, China
| | - Zhen Dong
- Department of Radiotherapy, BenQ Medical Center Affiliated to Nanjing Medical University, Nanjing, 210000 Jiangsu, China
| | - Dingyue Yu
- Department of Radiotherapy, Bengbu Second People's Hospital Affiliated to Bengbu Medical Collage, Bengbu, 233000 Anhui, China
| | - Mingchen Mu
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Wanwen Feng
- Translational Medicine Center, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jiayi Guo
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Beibei Cheng
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jiayou Guo
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| | - Jianxin Ma
- Department of Radiotherapy, Lianyungang Municipal Oriental Hospital Affiliated to Bengbu Medical Collage, Lianyungang, 222042 Jiangsu, China
| |
Collapse
|