1
|
Yuan J, Guo L, Ma J, Zhang H, Xiao M, Li N, Gong H, Yan M. HMGB1 as an extracellular pro-inflammatory cytokine: Implications for drug-induced organic damage. Cell Biol Toxicol 2024; 40:55. [PMID: 39008169 PMCID: PMC11249443 DOI: 10.1007/s10565-024-09893-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/18/2024] [Indexed: 07/16/2024]
Abstract
Drug-induced organic damage encompasses various intricate mechanisms, wherein HMGB1, a non-histone chromosome-binding protein, assumes a significant role as a pivotal hub gene. The regulatory functions of HMGB1 within the nucleus and extracellular milieu are interlinked. HMGB1 exerts a crucial regulatory influence on key biological processes including cell survival, inflammatory regulation, and immune response. HMGB1 can be released extracellularly from the cell during these processes, where it functions as a pro-inflammation cytokine. HMGB1 interacts with multiple cell membrane receptors, primarily Toll-like receptors (TLRs) and receptor for advanced glycation end products (RAGE), to stimulate immune cells and trigger inflammatory response. The excessive or uncontrolled HMGB1 release leads to heightened inflammatory responses and cellular demise, instigating inflammatory damage or exacerbating inflammation and cellular demise in different diseases. Therefore, a thorough review on the significance of HMGB1 in drug-induced organic damage is highly important for the advancement of pharmaceuticals, ensuring their effectiveness and safety in treating inflammation as well as immune-related diseases. In this review, we initially outline the characteristics and functions of HMGB1, emphasizing their relevance in disease pathology. Then, we comprehensively summarize the prospect of HMGB1 as a promising therapeutic target for treating drug-induced toxicity. Lastly, we discuss major challenges and propose potential avenues for advancing the development of HMGB1-based therapeutics.
Collapse
Affiliation(s)
- JianYe Yuan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha, China
- Department of Pathology, The Eight Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Lin Guo
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - JiaTing Ma
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - HeJian Zhang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - MingXuan Xiao
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Ning Li
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, China
| | - Hui Gong
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China
- Institute of Clinical Pharmacy, Central South University, Changsha, China
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China
| | - Miao Yan
- Department of Pharmacy, the Second Xiangya Hospital, Central South University, Changsha, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, China.
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
2
|
Younes S. The relationship between gender and pharmacology. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2024; 7:100192. [PMID: 39101002 PMCID: PMC11295939 DOI: 10.1016/j.crphar.2024.100192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/28/2024] [Accepted: 06/11/2024] [Indexed: 08/05/2024] Open
Abstract
The part of sexuality in pharmacology research was not acknowledged, and it was not thought-out to be a determinant that could impact strength and disease. For decades research has mainly contained male, women and animals, leading to a lack of news about syndromes in females. Still, it is critical to guarantee equal likeness so that determine the security, influence, and resistance of healing agents for all individuals. The underrepresentation of female models in preclinical studies over various decades has surpassed to disparities in the understanding, disease, and treatment of ailments 'tween genders. The closeness of sexuality bias has happened recognized as a contributing determinant to the restricted interpretation and replicability of preclinical research. Many demands operation have stressed the significance of including sexuality as a organic changeable, and this view is acquire growing support. Regardless of important progress in incorporating more female models into preclinical studies, differences prevail contemporary. The current review focuses on the part of sexuality and common in biomedical research and, therefore, their potential function in pharmacology and analyze the potential risks guide.
Collapse
Affiliation(s)
- Samer Younes
- Department of Pharmacy, Tartous University, Syria
| |
Collapse
|
3
|
Zhang XT, Zong LJ, Jia RM, Qin XM, Ruan SR, Lu LL, Wang P, Hu L, Liu WT, Yang Y, Li Y. Ozone attenuates chemotherapy-induced peripheral neuropathy via upregulating the AMPK-SOCS3 axis. J Cancer Res Ther 2023; 19:1031-1039. [PMID: 37675733 DOI: 10.4103/jcrt.jcrt_912_23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Background Chemotherapy-induced peripheral neuropathy (CIPN) is a severe adverse reaction to chemotherapeutics, which seriously affects the outcome of chemotherapy and patients' quality of life. Although it is commonly seen, it lacks effective treatment. Our previous study found that ozone could alleviate neuropathic pain. Damage-associated molecular patterns (DAMPs) or Toll-like receptor 4 (TLR4) or tissue factor (TF)-mediated neuroinflammation and microcirculation disturbance is the main reason for CIPN. Suppressors of cytokine signaling (SOCS) 3 is an endogenous negative feedback regulator of inflammation via TLR4 inhibition. Materials and Methods Oxaliplatin (L-OHP) was used to establish mice's CIPN model. Nociceptive responses were assessed by observing the ICR mice's incidence of foot regression in mechanical indentation response experiments. Cell signaling assays were performed by Western blotting and immunohistochemistry. The mouse leukemia cells of monocyte-macrophage line RAW 264.7 were cultured to investigate the effects of ozone administration on macrophage. Results Ozone decreased the expression of TF in the blood and sciatic nerve. It upregulated the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)-SOCS3 axis to relieve CIPN and inhibit TF expression in vivo. SOCS3 expression was induced by ozone to inhibit the p38/TF signaling in RAW 246.7 cells. Ozone also prevented L-OHP-induced sciatic nerve demyelination. Microglia activation was inhibited, and c-Fos and calcitonin gene-related peptide (CGRP) expression was decreased in the spinal dorsal horn via ozone. Conclusions In this study, we demonstrated that ozone could alleviate CIPN by upregulating the AMPK-SOCS3 axis to inhibit TF expression, which is a potential treatment for CIPN.
Collapse
Affiliation(s)
- Xiao-Tao Zhang
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong; Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Li-Juan Zong
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | | | - Xin-Miao Qin
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Shi-Rong Ruan
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Lin-Lin Lu
- Department of Oncology, Affiliated Qingdao Central Hospital of Qingdao University; Qingdao Cancer Prevention and Treatment Research Institute, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao Cancer Hospital, Qingdao, China
| | - Ping Wang
- Department of Pain Management, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Liang Hu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wen-Tao Liu
- Department of Pharmacology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Yang Yang
- Department of Pain Management, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Yan Li
- Department of Oncology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
4
|
Allegra S, Chiara F, Di Grazia D, Gaspari M, De Francia S. Evaluation of Sex Differences in Preclinical Pharmacology Research: How Far Is Left to Go? Pharmaceuticals (Basel) 2023; 16:786. [PMID: 37375734 DOI: 10.3390/ph16060786] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/10/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Until the last quarter of the 20th century, sex was not recognized as a variable in health research, nor was it believed to be a factor that could affect health and illness. Researchers preferred studying male models for a variety of reasons, such as simplicity, lower costs, hormone confounding effects, and fear of liability from perinatal exposure in case of pregnancy. Equitable representation is imperative for determining the safety, effectiveness, and tolerance of therapeutic agents for all consumers. Decades of female models' underrepresentation in preclinical studies has resulted in inequality in the understanding, diagnosis, and treatment of disease between the sexes. Sex bias has been highlighted as one of the contributing factors to the poor translation and replicability of preclinical research. There have been multiple calls for action, and the inclusion of sex as a biological variable is increasingly supported. However, although there has been substantial progress in the efforts to include more female models in preclinical studies, disparities today remain. In the present review, we consider the current standard practice of the preclinical research setting, why the sex bias exists, why there is the need to include female models, and what risks may arise from continuing this exclusion from experimental design.
Collapse
Affiliation(s)
- Sarah Allegra
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Francesco Chiara
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Daniela Di Grazia
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Marco Gaspari
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| | - Silvia De Francia
- Department of Biological and Clinical Sciences, University of Turin, S. Luigi Gonzaga Hospital, 10043 Orbassano, Italy
| |
Collapse
|
5
|
Abstract
Interactions between the immune and nervous systems are of central importance in neuropathic pain, a common and debilitating form of chronic pain caused by a lesion or disease affecting the somatosensory system. Our understanding of neuroimmune interactions in pain research has advanced considerably. Initially considered as passive bystanders, then as culprits in the pathogenesis of neuropathic pain, immune responses in the nervous system are now established to underpin not only the initiation and progression of pain but also its resolution. Indeed, immune cells and their mediators are well-established promoters of neuroinflammation at each level of the neural pain pathway that contributes to pain hypersensitivity. However, emerging evidence indicates that specific subtypes of immune cells (including antinociceptive macrophages, pain-resolving microglia and T regulatory cells) as well as immunoresolvent molecules and modulators of the gut microbiota-immune system axis can reduce the pain experience and contribute to the resolution of neuropathic pain. This Review provides an overview of the immune mechanisms responsible for the resolution of neuropathic pain, including those involved in innate, adaptive and meningeal immunity as well as interactions with the gut microbiome. Specialized pro-resolving mediators and therapeutic approaches that target these neuroimmune mechanisms are also discussed.
Collapse
|
6
|
Su PYP, Zhang L, He L, Zhao N, Guan Z. The Role of Neuro-Immune Interactions in Chronic Pain: Implications for Clinical Practice. J Pain Res 2022; 15:2223-2248. [PMID: 35957964 PMCID: PMC9359791 DOI: 10.2147/jpr.s246883] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/19/2022] [Indexed: 11/23/2022] Open
Abstract
Chronic pain remains a public health problem and contributes to the ongoing opioid epidemic. Current pain management therapies still leave many patients with poorly controlled pain, thus new or improved treatments are desperately needed. One major challenge in pain research is the translation of preclinical findings into effective clinical practice. The local neuroimmune interface plays an important role in the initiation and maintenance of chronic pain and is therefore a promising target for novel therapeutic development. Neurons interface with immune and immunocompetent cells in many distinct microenvironments along the nociceptive circuitry. The local neuroimmune interface can modulate the activity and property of the neurons to affect peripheral and central sensitization. In this review, we highlight a specific subset of many neuroimmune interfaces. In the central nervous system, we examine the interface between neurons and microglia, astrocytes, and T lymphocytes. In the periphery, we profile the interface between neurons in the dorsal root ganglion with T lymphocytes, satellite glial cells, and macrophages. To bridge the gap between preclinical research and clinical practice, we review the preclinical studies of each neuroimmune interface, discuss current clinical treatments in pain medicine that may exert its action at the neuroimmune interface, and highlight opportunities for future clinical research efforts.
Collapse
Affiliation(s)
- Po-Yi Paul Su
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Lingyi Zhang
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Anesthesiology, the First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, People’s Republic of China
| | - Liangliang He
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
- Department of Pain Management, Xuanwu Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Na Zhao
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| | - Zhonghui Guan
- Department of Anesthesia and Perioperative Care, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Meng L, Huang J, Qiu F, Shan X, Chen L, Sun S, Wang Y, Yang J. Peripheral Neuropathy During Concomitant Administration of Proteasome Inhibitors and Factor Xa Inhibitors: Identifying the Likelihood of Drug-Drug Interactions. Front Pharmacol 2022; 13:757415. [PMID: 35359859 PMCID: PMC8963930 DOI: 10.3389/fphar.2022.757415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Backgrounds: Proteasome inhibitors (PI) cause toxic peripheral neuropathy (PN), which is one of the dose-limiting adverse events of these treatments. Recent preclinical studies find that factor Xa inhibitor (FXaI), rivaroxaban, promotes PN in animals receiving oxaliplatin. Cancer patients can receive combined therapy of PI and FXaI. This study aimed to identify and characterize the interaction signals for the concomitant use of PI and FXaI resulting in PN.Methods: Reports from the United States FDA Adverse Event Reporting System (FAERS) were extracted from the first quarter of 2004 to the first quarter of 2020 for analysis. The Standardized Medical Dictionary for Regulatory Activities (MedDRA) query was used to identify PN cases. We conducted an initial disproportionality investigation to detect PN adverse event signals associated with the combined use of PI and FXaI by estimating a reporting odds ratio (ROR) with a 95% confidence interval (CI). The adjusted RORs were then analyzed by logistic regression analysis (adjusting for age, gender, and reporting year), and additive/multiplicative models were performed to further confirm the findings. Additionally, subset data analysis was performed on the basis of a single drug of PI and FXaI.Results: A total of 159,317 adverse event reports (including 2,822 PN reports) were included. The combined use of PI and FXaI was associated with a higher reporting of PN (RORadj = 7.890, 95%CI, 5.321–11.698). The result remained significant based on additive/multiplicative methods. The observed association was consistent in the analysis restricted to all specific PI agents (bortezomib and ixazomib) and FXaI (rivaroxaban), except apixaban.Conclusion: Analysis of FAERS data identified reporting associations of PN in the combined use of PI and FXaI, suggesting the need for more robust preclinical and clinical studies to elucidate the relationship.
Collapse
Affiliation(s)
- Long Meng
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jing Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Feng Qiu
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xuefeng Shan
- Department of Pharmacy, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin Chen
- Department of Pharmacy, Chongqing Health Center for Women and Children, Chongqing, China
| | - Shusen Sun
- Department of Pharmacy Practice, College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, United States
- Department of Pharmacy, Xiangya Hospital Central South University, Changsha, China
| | - Yuwei Wang
- Chongqing University Cancer Hospital, Chongqing, China
| | - Junqing Yang
- Key Laboratory of Biochemistry and Molecular Pharmacology, Department of Pharmacology, Chongqing Medical University, Chongqing, China
- *Correspondence: Junqing Yang,
| |
Collapse
|
8
|
Miyamoto T, Domoto R, Sekiguchi F, Kamaguchi R, Nishimura R, Matsuno M, Tsubota M, Fujitani M, Hatanaka S, Koizumi Y, Wang D, Nishibori M, Kawabata A. Development of hepatic impairment aggravates chemotherapy-induced peripheral neuropathy following oxaliplatin treatment: Evidence from clinical and preclinical studies. J Pharmacol Sci 2022; 148:315-325. [PMID: 35177211 DOI: 10.1016/j.jphs.2022.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/08/2021] [Accepted: 01/11/2022] [Indexed: 10/19/2022] Open
Abstract
Oxaliplatin often induces peripheral neuropathy, a dose-limiting adverse reaction, and in rare cases leads to sinusoidal obstruction syndrome. We thus conducted a retrospective cohort study to examine the relationship between oxaliplatin-induced peripheral neuropathy (OIPN) and hepatic impairment, and then perform a fundamental study to analyze the underlying mechanisms. Analysis of medical records in cancer patients treated with oxaliplatin indicated that laboratory test parameters of hepatic impairment including AST, ALT and APRI (AST to platelet ratio index) moderately increased during oxaliplatin treatment, which was positively correlated with the severity of OIPN (grades 1-4), and associated with later incidence of survivors with OIPN grades ≥2. In mice, hepatic injury induced by CCl4 or ethanol accelerated OIPN in mice, an effect prevented by inactivation of high mobility group box 1 (HMGB1), known to participate in OIPN, by the neutralizing antibody or thrombomodulin alfa capable of promoting its thrombin-dependent degradation. Oxaliplatin also aggravated the hepatic injury in mice. CCl4 released HMGB1 from cultured hepatic parenchymal cells, and oxaliplatin at clinically achievable concentrations released HMGB1 from hepatic parenchymal and non-parenchymal cells. Our clinical and preclinical data suggest that the development of mild hepatic impairment during oxaliplatin treatment is associated with later aggravation of OIPN.
Collapse
Affiliation(s)
- Tomoyoshi Miyamoto
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan; Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Risa Domoto
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Riki Kamaguchi
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Rika Nishimura
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Misato Matsuno
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | - Maho Tsubota
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan
| | | | | | - Yuichi Koizumi
- Department of Pharmacy, Seichokai Fuchu Hospital, Izumi, Japan
| | - Dengli Wang
- Department of Pharmacology, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Masahiro Nishibori
- Department of Translational Research and Drug Development, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Atsufumi Kawabata
- Laboratory of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University, Higashi-Osaka, Japan.
| |
Collapse
|
9
|
Tsubota M, Miyazaki T, Ikeda Y, Hayashi Y, Aokiba Y, Tomita S, Sekiguchi F, Wang D, Nishibori M, Kawabata A. Caspase-Dependent HMGB1 Release from Macrophages Participates in Peripheral Neuropathy Caused by Bortezomib, a Proteasome-Inhibiting Chemotherapeutic Agent, in Mice. Cells 2021; 10:cells10102550. [PMID: 34685531 PMCID: PMC8533714 DOI: 10.3390/cells10102550] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 02/06/2023] Open
Abstract
Given the role of macrophage-derived high mobility group box 1 (HMGB1) in chemotherapy-induced peripheral neuropathy (CIPN) caused by paclitaxel, we analyzed the role of HMGB1 and macrophages in the CIPN caused by bortezomib, a proteasome-inhibiting chemotherapeutic agent used for the treatment of multiple myeloma. Repeated administration of bortezomib caused CIPN accompanied by early-stage macrophage accumulation in the dorsal root ganglion. This CIPN was prevented by an anti-HMGB1-neutralizing antibody, thrombomodulin alfa capable of accelerating thrombin-dependent degradation of HMGB1, antagonists of the receptor for advanced glycation end-products (RAGE) and C-X-C motif chemokine receptor 4 (CXCR4), known as HMGB1-targeted membrane receptors, or macrophage depletion with liposomal clodronate, as reported in a CIPN model caused by paclitaxel. In macrophage-like RAW264.7 cells, bortezomib as well as MG132, a well-known proteasome inhibitor, caused HMGB1 release, an effect inhibited by caspase inhibitors but not inhibitors of NF-κB and p38 MAP kinase, known to mediate paclitaxel-induced HMGB1 release from macrophages. Bortezomib increased cleaved products of caspase-8 and caused nuclear fragmentation or condensation in macrophages. Repeated treatment with the caspase inhibitor prevented CIPN caused by bortezomib in mice. Our findings suggest that bortezomib causes caspase-dependent release of HMGB1 from macrophages, leading to the development of CIPN via activation of RAGE and CXCR4.
Collapse
Affiliation(s)
- Maho Tsubota
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Takaya Miyazaki
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yuya Ikeda
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yusuke Hayashi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Yui Aokiba
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Shiori Tomita
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Fumiko Sekiguchi
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
| | - Dengli Wang
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Masahiro Nishibori
- Department of Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8558, Japan; (D.W.); (M.N.)
| | - Atsufumi Kawabata
- Laboratory of Pharmacology and Pathophysiology, Faculty of Pharmacy, Kindai University, 3-4-1 Kowakae, Higashiosaka 577-8502, Japan; (M.T.); (T.M.); (Y.I.); (Y.H.); (Y.A.); (S.T.); (F.S.)
- Correspondence: ; Tel.: +81-6-4307-3631
| |
Collapse
|
10
|
Macrophage as a Peripheral Pain Regulator. Cells 2021; 10:cells10081881. [PMID: 34440650 PMCID: PMC8392675 DOI: 10.3390/cells10081881] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 12/30/2022] Open
Abstract
A neuroimmune crosstalk is involved in somatic and visceral pathological pain including inflammatory and neuropathic components. Apart from microglia essential for spinal and supraspinal pain processing, the interaction of bone marrow-derived infiltrating macrophages and/or tissue-resident macrophages with the primary afferent neurons regulates pain signals in the peripheral tissue. Recent studies have uncovered previously unknown characteristics of tissue-resident macrophages, such as their origins and association with regulation of pain signals. Peripheral nerve macrophages and intestinal resident macrophages, in addition to adult monocyte-derived infiltrating macrophages, secrete a variety of mediators, such as tumor necrosis factor-α, interleukin (IL)-1β, IL-6, high mobility group box 1 and bone morphogenic protein 2 (BMP2), that regulate the excitability of the primary afferents. Neuron-derived mediators including neuropeptides, ATP and macrophage-colony stimulating factor regulate the activity or polarization of diverse macrophages. Thus, macrophages have multitasks in homeostatic conditions and participate in somatic and visceral pathological pain by interacting with neurons.
Collapse
|
11
|
Estrogen decline is a risk factor for paclitaxel-induced peripheral neuropathy: Clinical evidence supported by a preclinical study. J Pharmacol Sci 2021; 146:49-57. [PMID: 33858655 DOI: 10.1016/j.jphs.2021.03.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/02/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
We performed clinical retrospective study in female cancer patients and fundamental experiments in mice, in order to clarify risk factors for paclitaxel-induced peripheral neuropathy (PIPN). In the clinical study, 131 of 189 female outpatients with cancer undergoing paclitaxel-based chemotherapy met inclusion criteria. Breast cancer survivors (n = 40) showed significantly higher overall PIPN (grades 1-4) incidence than non-breast cancer survivors (n = 91). Multivariate sub-analyses of breast cancer survivors showed that 57 years of age or older and endocrine therapy before paclitaxel treatment were significantly associated with severe PIPN (grades 2-4). The age limit was also significantly correlated with overall development of severe PIPN. In the preclinical study, female mice subjected to ovariectomy received repeated administration of paclitaxel, and mechanical nociceptive threshold was assessed by von Frey test. Ovariectomy aggravated PIPN in the mice, an effect prevented by repeated treatment with 17β-estradiol. Repeated administration of thrombomodulin alfa (TMα), known to prevent chemotherapy-induced peripheral neuropathy in rats and mice, also prevented the development of PIPN in the ovariectomized mice. Collectively, breast cancer survivors, particularly with postmenopausal estrogen decline and/or undergoing endocrine therapy, are considered a PIPN-prone subpopulation, and may require non-hormonal pharmacological intervention for PIPN in which TMα may serve as a major candidate.
Collapse
|
12
|
Sekiguchi F, Kawabata A. Role of HMGB1 in Chemotherapy-Induced Peripheral Neuropathy. Int J Mol Sci 2020; 22:ijms22010367. [PMID: 33396481 PMCID: PMC7796379 DOI: 10.3390/ijms22010367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/25/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN), one of major dose-limiting side effects of first-line chemotherapeutic agents such as paclitaxel, oxaliplatin, vincristine, and bortezomib is resistant to most of existing medicines. The molecular mechanisms of CIPN have not been fully understood. High mobility group box 1 (HMGB1), a nuclear protein, is a damage-associated molecular pattern protein now considered to function as a pro-nociceptive mediator once released to the extracellular space. Most interestingly, HMGB1 plays a key role in the development of CIPN. Soluble thrombomodulin (TMα), known to degrade HMGB1 in a thrombin-dependent manner, prevents CIPN in rodents treated with paclitaxel, oxaliplatin, or vincristine and in patients with colorectal cancer undergoing oxaliplatin-based chemotherapy. In this review, we describe the role of HMGB1 and its upstream/downstream mechanisms in the development of CIPN and show drug candidates that inhibit the HMGB1 pathway, possibly useful for prevention of CIPN.
Collapse
|