1
|
Guo H, Wang H, Gao M, Deng H, Zhang Y, Gong J, Zhang W. Harnessing the CD44-targeted delivery of self-assembled hyaluronan nanogel to reverse the antagonism between Cisplatin and Gefitinib in NSCLC cancer therapy. Carbohydr Polym 2024; 344:122521. [PMID: 39218565 DOI: 10.1016/j.carbpol.2024.122521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/10/2024] [Accepted: 07/17/2024] [Indexed: 09/04/2024]
Abstract
The combination of the standard platinum-based chemotherapy with EGFR-tyrosine kinase inhibitor Gefitinib (Gef) principally boosts the anticancer efficacy of advanced non-small cell lung cancer (NSCLC) through non-overlapping mechanisms of action, however the clinical trials of cisplatin (Cis) and Gef combination failed to show a therapeutic improvement likely due to compromised cellular influx of Cis with the Gef interference. To overcome the antagonism between Cis and Gef in anti-NSCLC therapy, here we demonstrated a self-targeted hyaluronan (HA) nanogel to facilitate the anticancer co-delivery by utilizing the HA's intrinsic targeting towards CD44, a receptor frequently overexpressed on lung cancer cells. The co-assembly between HA, Cis and Gef generated a HA/Cis/Gef nanogel of 177.8 nm, featuring a prolonged drug release. Unlike the Gef inhibited the Cis uptake, the HA/Cis/Gef nanogel efficiently facilitated the drug internalization through CD44-targeted delivery as verified by HA competition and CD44 knocking down in H1975 NSCLC model both in vitro and in vivo. Moreover, the HA/Cis/Gef nanogel significantly improved the anticancer efficacy and meanwhile diminished the side effects in reference to the combination of free Cis and Gef. This CD44-targeted HA/Cis/Gef nanogel provided a potent strategy to advance the platinum-based combination therapy towards optimized NSCLC therapy.
Collapse
Affiliation(s)
- Hua Guo
- State Key Laboratory of Molecular Oncology and Department of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, PR China
| | - Huimin Wang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Menghan Gao
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Hong Deng
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Yiyi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China
| | - Jianan Gong
- The Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Weiqi Zhang
- State Key Laboratory of Complex Severe and Rare Diseases, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100005, PR China.
| |
Collapse
|
2
|
Zhang S, Liu Y, Ma X, Gao X, Ru Y, Hu X, Gu X. Recent advances in the potential role of RNA N4-acetylcytidine in cancer progression. Cell Commun Signal 2024; 22:49. [PMID: 38233930 PMCID: PMC10795262 DOI: 10.1186/s12964-023-01417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/02/2023] [Indexed: 01/19/2024] Open
Abstract
N4-acetylcytidine (ac4C) is a highly conserved chemical modification widely found in eukaryotic and prokaryotic RNA, such as tRNA, rRNA, and mRNA. This modification is significantly associated with various human diseases, especially cancer, and its formation depends on the catalytic activity of N-acetyltransferase 10 (NAT10), the only known protein that produces ac4C. This review discusses the detection techniques and regulatory mechanisms of ac4C and summarizes ac4C correlation with tumor occurrence, development, prognosis, and drug therapy. It also comments on a new biomarker for early tumor diagnosis and prognosis prediction and a new target for tumor therapy. Video Abstract.
Collapse
Affiliation(s)
- Shujun Zhang
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yafeng Liu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xiao Ma
- Department of Orthopedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Yi Ru
- Hepatobiliary Pancreatic Surgery, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Xinjun Hu
- Department of Infectious Diseases, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471000, Henan, China.
| |
Collapse
|
3
|
Wei W, Zhang S, Han H, Wang X, Zheng S, Wang Z, Yang C, Wang L, Ma J, Guo S, Wang J, Liu L, Choe J, Lin S. NAT10-mediated ac4C tRNA modification promotes EGFR mRNA translation and gefitinib resistance in cancer. Cell Rep 2023; 42:112810. [PMID: 37463108 DOI: 10.1016/j.celrep.2023.112810] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/20/2023] Open
Abstract
Aberrant RNA modifications are frequently associated with cancers, while the underlying mechanisms and clinical significance remain poorly understood. Here, we find that the ac4C RNA acetyltransferase NAT10 is significantly upregulated in esophageal cancers (ESCAs) and associated with poor ESCA prognosis. In addition, using ESCA cell lines and mouse models, we confirm the critical functions of NAT10 in promoting ESCA tumorigenesis and progression in vitro and in vivo. Mechanistically, NAT10 depletion reduces the abundance of ac4C-modified tRNAs and decreases the translation efficiencies of mRNAs enriched for ac4C-modified tRNA-decoded codons. We further identify EGFR as a key downstream target that facilitates NAT10's oncogenic functions. In terms of clinical significance, we demonstrate that NAT10 depletion and gefitinib treatment synergistically inhibit ESCA progression in vitro and in vivo. Our data indicate the mechanisms underlying ESCA progression at the layer of mRNA translation control and provide molecular insights for the development of effective cancer therapeutic strategies.
Collapse
Affiliation(s)
- Wei Wei
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Shuishen Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Han
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaochen Wang
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siyi Zheng
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Zhaoyu Wang
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Chunlong Yang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Lu Wang
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou 510515, China
| | - Jieyi Ma
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Siyao Guo
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Juan Wang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Lianlian Liu
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Junho Choe
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea; Hanyang Institute of Bioscience and Biotechnology, Hanyang University, Seoul 04763, Republic of Korea; Research Institute for Convergence of Basic Sciences, Hanyang University, Seoul 04763, Republic of Korea
| | - Shuibin Lin
- Department of Otolaryngology, Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|