1
|
Hu Y, Zhou P, Deng K, Zhou Y, Hu K. Targeting the gut microbiota: a new strategy for colorectal cancer treatment. J Transl Med 2024; 22:915. [PMID: 39379983 PMCID: PMC11460241 DOI: 10.1186/s12967-024-05671-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 09/04/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND How to reduce the high incidence rate and mortality of colorectal cancer (CRC) effectively is the focus of current research. Endoscopic treatment of early-stage CRC and colorectal adenomas (CAC) has a high success rate, but although several treatments are available for advanced CRC, such as surgery, radiotherapy, chemotherapy, and immunotherapy, the 5-year survival rate remains low. In view of the high incidence rate and mortality of CRC, early rational drug prevention for high-risk groups and exploration of alternative treatment modalities are particularly warranted. Gut microbiota is the target of and interacts with probiotics, prebiotics, aspirin, metformin, and various Chinese herbal medicines (CHMs) for the prevention of CRC. In addition, the anti-cancer mechanisms of probiotics differ widely among bacterial strains, and both bacterial strains and their derivatives and metabolites have been found to have anti-cancer effects. Gut microbiota plays a significant role in early drug prevention of CRC and treatment of CRC in its middle and late stages, targeting gut microbiota may be a new strategy for colorectal cancer treatment.
Collapse
Affiliation(s)
- Yue Hu
- Health Science Center, Ningbo University, Ningbo, China
| | - Peng Zhou
- Health Science Center, Ningbo University, Ningbo, China
| | - Kaili Deng
- Health Science Center, Ningbo University, Ningbo, China
| | - Yuping Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
- Institute of Digestive Disease of Ningbo University, Ningbo, China.
- Ningbo Key Laboratory of Translational Medicine Research on Gastroenterology and Hepatology, Ningbo, China.
| | - Kefeng Hu
- Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
2
|
Fernandes C, Miranda MCC, Roque CR, Paguada ALP, Mota CAR, Florêncio KGD, Pereira AF, Wong DVT, Oriá RB, Lima-Júnior RCP. Is There an Interplay between Environmental Factors, Microbiota Imbalance, and Cancer Chemotherapy-Associated Intestinal Mucositis? Pharmaceuticals (Basel) 2024; 17:1020. [PMID: 39204125 PMCID: PMC11357004 DOI: 10.3390/ph17081020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024] Open
Abstract
Interindividual variation in drug efficacy and toxicity is a significant problem, potentially leading to adverse clinical and economic public health outcomes. While pharmacogenetics and pharmacogenomics have long been considered the primary causes of such heterogeneous responses, pharmacomicrobiomics has recently gained attention. The microbiome, a community of microorganisms living in or on the human body, is a critical determinant of drug response and toxicity. Factors such as diet, lifestyle, exposure to xenobiotics, antibiotics use, illness, and genetics can influence the composition of the microbiota. Changes in the intestinal microbiota are particularly influential in drug responsiveness, especially in cancer chemotherapy. The microbiota can modulate an individual's response to a drug, affecting its bioavailability, clinical effect, and toxicity, affecting treatment outcomes and patient quality of life. For instance, the microbiota can convert drugs into active or toxic metabolites, influencing their efficacy and side effects. Alternatively, chemotherapy can also alter the microbiota, creating a bidirectional interplay. Probiotics have shown promise in modulating the microbiome and ameliorating chemotherapy side effects, highlighting the potential for microbiota-targeted interventions in improving cancer treatment outcomes. This opinion paper addresses how environmental factors and chemotherapy-induced dysbiosis impact cancer chemotherapy gastrointestinal toxicity.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | | | - Cássia Rodrigues Roque
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Ana Lizeth Padilla Paguada
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Carlos Adrian Rodrigues Mota
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Katharine Gurgel Dias Florêncio
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Anamaria Falcão Pereira
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| | - Reinaldo Barreto Oriá
- Laboratory of Tissue Healing, Ontogeny, and Nutrition, Department of Morphology, and Institute of Biomedicine, Faculty of Medicine, Federal University of Ceara, Fortaleza 60430-170, Brazil; (C.R.R.); (R.B.O.)
| | - Roberto César Pereira Lima-Júnior
- Department of Physiology and Pharmacology, and Drug Research and Development Center (NPDM), Faculty of Medicine, Federal University of Ceara, Rua Cel Nunes de Melo, 1000, Fortaleza 60430-270, Brazil; (C.F.); (A.L.P.P.); (C.A.R.M.); (K.G.D.F.); (A.F.P.); (D.V.T.W.)
| |
Collapse
|
3
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
4
|
Nobre L, Fernandes C, Florêncio K, Alencar N, Wong D, Lima-Júnior R. Could paraprobiotics be a safer alternative to probiotics for managing cancer chemotherapy-induced gastrointestinal toxicities? Braz J Med Biol Res 2023; 55:e12522. [PMID: 36651453 PMCID: PMC9843735 DOI: 10.1590/1414-431x2022e12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/24/2022] [Indexed: 01/18/2023] Open
Abstract
Clinical oncology has shown outstanding progress improving patient survival due to the incorporation of new drugs. However, treatment success may be reduced by the emergency of dose-limiting side effects, such as intestinal mucositis and diarrhea. Mucositis and diarrhea management is symptomatic, and there is no preventive therapy. Bacterial and fungal-based compounds have been suggested as an alternative for preventing the development of diarrhea in cancer patients. Using probiotics is safe and effective in immunocompetent individuals, but concerns remain during immunosuppressive conditions. Paraprobiotics, formulations composed of non-viable microorganisms, have been proposed to overcome such limitation. The present literature review discusses current evidence regarding the possible use of paraprobiotics as an alternative to probiotics to prevent gastrointestinal toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- L.M.S. Nobre
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - C. Fernandes
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - K.G.D. Florêncio
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - N.M.N. Alencar
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - D.V.T. Wong
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - R.C.P. Lima-Júnior
- Núcleo de Pesquisa e Desenvolvimento de Medicamentos, Departamento de Fisiologia e Farmacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| |
Collapse
|
5
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
6
|
Effects of a novel toll-like receptor 4 antagonist IAXO-102 in a murine model of chemotherapy-induced gastrointestinal toxicity. Cancer Chemother Pharmacol 2022; 90:267-278. [PMID: 35962138 PMCID: PMC9402738 DOI: 10.1007/s00280-022-04463-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
INTRODUCTION Gastrointestinal mucositis (GIM) is a side effect of high-dose irinotecan (CPT-11), causing debilitating symptoms that are often poorly managed. The role of TLR4 in the development of GIM has been clearly demonstrated. We, therefore, aimed to investigate the potential of the TLR4 antagonist, IAXO-102, to attenuate gastrointestinal inflammation as well as supress tumour activity in a colorectal-tumour-bearing mouse model of GIM induced by CPT-11. METHODS 24 C57BL/6 mice received a vehicle, daily i.p. IAXO-102 (3 mg/kg), i.p. CPT-11 (270 mg/kg) or a combination of CPT-11 and IAXO-102. GIM was assessed using validated toxicity markers. At 72 h, colon and tumour tissue were collected and examined for histopathological changes and RT-PCR for genes of interest; TLR4, MD-2, CD-14, MyD88, IL-6, IL-6R, CXCL2, CXCR1, and CXCR2. RESULTS IAXO-102 prevented diarrhoea in mice treated with CPT-11. Tumour volume in IAXO-102-treated mice was lower compared to vehicle at 48 h (P < 0.05). There were no differences observed in colon and tumour weights between the treatment groups. Mice who received the combination treatment had improved tissue injury score (P < 0.05) in the colon but did not show any improvements in cell proliferation or apoptotic rate. Expression of all genes was similar across all treatment groups in the tumour (P > 0.05). In the colon, there was a difference in transcript expression in vehicle vs. IAXO-102 (P < 0.05) and CPT-11 vs. combination (P < 0.01) in MD-2 and IL-6R, respectively. CONCLUSION IAXO-102 was able to attenuate symptomatic parameters of GIM induced by CPT-11 as well as reduce tissue injury in the colon. However, there was no effect on cell proliferation and apoptosis. As such, TLR4 activation plays a partial role in GIM development but further research is required to understand the specific inflammatory signals underpinning tissue-level changes.
Collapse
|
7
|
Wardill HR, de Mooij CEM, Da Silva Ferreira AR, Havinga H, Harmsen HJM, van der Velden WJFM, van Groningen LFJ, Tissing WJE, Blijlevens NMA. Supporting the gastrointestinal microenvironment during high-dose chemotherapy and stem cell transplantation by inhibiting IL-1 signaling with anakinra. Sci Rep 2022; 12:6803. [PMID: 35546555 PMCID: PMC9095632 DOI: 10.1038/s41598-022-10700-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/07/2022] [Indexed: 11/20/2022] Open
Abstract
High-dose chemotherapy causes intestinal inflammation and subsequent breakdown of the mucosal barrier, permitting translocation of enteric pathogens, clinically manifesting as fever. Antibiotics are mainstay for controlling these complications, however, they are increasingly recognized for their detrimental effects, including antimicrobial resistance and dysbiosis. Here, we show that mucosal barrier injury induced by the mucotoxic chemotherapeutic agent, high-dose melphalan (HDM), is characterized by hyper-active IL-1b/CXCL1/neutrophil signaling. Inhibition of this pathway with IL-1RA, anakinra, minimized the duration and intensity of mucosal barrier injury and accompanying clinical symptoms, including diarrhea, weight loss and fever in rats. 16S analysis of fecal microbiome demonstrated a more stable composition in rats receiving anakinra, with reduced pathogen expansion. In parallel, we report through Phase IIA investigation that anakinra is safe in stem cell transplant patients with multiple myeloma after HDM. Ramping-up anakinra (100–300 mg administered intravenously for 15 days) did not cause any adverse events or dose limiting toxicities, nor did it change time to neutrophil recovery. Our results reinforce that strengthening the mucosal barrier may be an effective supportive care strategy to mitigate local and systemic clinical consequences of HDM. We are now conducting a Phase IIB multicenter, placebo-controlled, double-blinded trial to assess clinical efficacy of anakinra (AFFECT-2). Trial registration: ClinicalTrials.gov identifier: NCT03233776.
Collapse
Affiliation(s)
- H R Wardill
- School of Biomedicine, The University of Adelaide, Adelaide, SA, Australia. .,The Supportive Oncology Research Group, Precision Medicine Theme (Cancer), The South Australian Health and Medical Research Institute, Adelaide, SA, Australia. .,Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | - C E M de Mooij
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A R Da Silva Ferreira
- Department of Medical Microbiology, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H Havinga
- Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - H J M Harmsen
- Department of Medical Microbiology, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | | | - L F J van Groningen
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - W J E Tissing
- Department of Pediatrics, The University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Princes Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - N M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|