1
|
Miyake T, Mochizuki T, Nakagawa T, Nakamura M, Emoto C, Komiyama N, Hirabayashi M, Tsuruta S, Shimojo T, Terao K, Tachibana T. Quantitative prediction of CYP3A-mediated drug-drug interactions by correctly estimating fraction metabolized using human liver chimeric mice. Br J Pharmacol 2024; 181:1091-1106. [PMID: 37872109 DOI: 10.1111/bph.16270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/13/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND AND PURPOSE Fraction metabolized (fm ) and fraction transported (ft ) are important for understanding drug-drug interactions (DDIs) in drug discovery and development. However, current in vitro systems cannot accurately estimate in vivo fm due to inability to reflect the ft by efflux transporters (ft,efflux ). This study demonstrates how CYP3A-mediated DDI for CYP3A/P-gp substrates can be predicted using Hu-PXB mice as human liver chimeric mice. EXPERIMENTAL APPROACH For estimating human in vitro fm by CYP3A enzyme (fm,CYP3A,in vitro ), six drugs, including CYP3A/P-gp substrates (alprazolam, cyclosporine, docetaxel, midazolam, prednisolone, and theophylline) and human hepatocytes were incubated with or without ketoconazole as a CYP3A inhibitor. We calculated fm,CYP3A,in vitro based on hepatic intrinsic clearance. To estimate human in vivo fm,CYP3A (fm,CYP3A,in vivo ), we collected information on clinical DDI caused by ketoconazole for these six drugs. We calculated fm,CYP3A,in vivo using the change of total clearance (CLtotal ). For evaluating the human DDI predictability, the six drugs were administered intravenously to Hu-PXB and SCID mice with or without ketoconazole. We calculated the change of CLtotal caused by ketoconazole. We compared the CLtotal change in humans with that in Hu-PXB and SCID mice. KEY RESULTS The fm,CYP3A,in vitro was overestimated compared to the fm,CYP3A,in vivo . Hu-PXB mice showed much better correlation in the change of CLtotal with humans (R2 = 0.95) compared to SCID mice (R2 = 0.0058). CONCLUSIONS AND IMPLICATIONS CYP3A-mediated DDI can be predicted by correctly estimating human fm,CYP3A,in vivo using Hu-PXB mice. These mice could be useful predicting hepatic fm and ft,efflux .
Collapse
Affiliation(s)
- Taiji Miyake
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tatsuki Mochizuki
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Toshito Nakagawa
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Mikiko Nakamura
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Chie Emoto
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Natsuko Komiyama
- Chugai Research Institute for Medical Science Inc., Yokohama, Kanagawa, Japan
| | - Manabu Hirabayashi
- Chugai Research Institute for Medical Science Inc., Yokohama, Kanagawa, Japan
| | - Satoshi Tsuruta
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tomofumi Shimojo
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Kimio Terao
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| | - Tatsuhiko Tachibana
- Pharmaceutical Science Department, Translational Research Div., Chugai Pharmaceutical Co., Ltd., Yokohama, Kanagawa, Japan
| |
Collapse
|
2
|
Briki M, Murisier A, Guidi M, Seydoux C, Buclin T, Marzolini C, Girardin FR, Thoma Y, Carrara S, Choong E, Decosterd LA. Liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) methods for the therapeutic drug monitoring of cytotoxic anticancer drugs: An update. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1236:124039. [PMID: 38490042 DOI: 10.1016/j.jchromb.2024.124039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/26/2024] [Accepted: 01/31/2024] [Indexed: 03/17/2024]
Abstract
In the era of precision medicine, there is increasing evidence that conventional cytotoxic agents may be suitable candidates for therapeutic drug monitoring (TDM)- guided drug dosage adjustments and patient's tailored personalization of non-selective chemotherapies. To that end, many liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assays have been developed for the quantification of conventional cytotoxic anticancer chemotherapies, that have been comprehensively and critically reviewed. The use of stable isotopically labelled internal standards (IS) of cytotoxic drugs was strikingly uncommon, accounting for only 48 % of the methods found, although their use could possible to suitably circumvent patients' samples matrix effects variability. Furthermore, this approach would increase the reliability of cytotoxic drug quantification in highly multi-mediated cancer patients with complex fluctuating pathophysiological and clinical conditions. LC-MS/MS assays can accommodate multiplexed analyses of cytotoxic drugs with optimal selectivity and specificity as well as short analytical times and, when using stable-isotopically labelled IS for quantification, provide concentrations measurements with a high degree of certainty. However, there are still organisational, pharmacological, and medical constraints to tackle before TDM of cytotoxic drugs can be more largely adopted in the clinics for contributing to our ever-lasting quest to improve cancer treatment outcomes.
Collapse
Affiliation(s)
- M Briki
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - A Murisier
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - M Guidi
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, University of Lausanne, 1206 Geneva, Switzerland; Centre for Research and Innovation in Clinical Pharmaceutical Sciences, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Seydoux
- Internal Medicine Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - T Buclin
- Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - C Marzolini
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - F R Girardin
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland; Service of Clinical Pharmacology, Department of Medicine, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - Y Thoma
- School of Engineering and Management Vaud, HES-SO University of Applied Sciences and Arts Western Switzerland, 1401 Yverdon-les-Bains, Switzerland
| | - S Carrara
- Bio/CMOS Interfaces Laboratory, École Polytechnique Fédérale de Lausanne-EPFL, 2002 Neuchâtel, Switzerland
| | - E Choong
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland
| | - L A Decosterd
- Laboratory of Clinical Pharmacology, Department of Laboratory Medicine and Pathology, Lausanne University Hospital and University of Lausanne, 1011 Lausanne, Switzerland.
| |
Collapse
|
3
|
van der Heijden LT, Ribbers CA, Vermunt MAC, Pluim D, Acda M, Tibben M, Rosing H, Douma JAJ, Naipal K, Bergman AM, Beijnen JH, Huitema ADR, Opdam FL. Is Higher Docetaxel Clearance in Prostate Cancer Patients Explained by Higher CYP3A? An In Vivo Phenotyping Study with Midazolam. J Clin Pharmacol 2024; 64:155-163. [PMID: 37789682 DOI: 10.1002/jcph.2362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/29/2023] [Indexed: 10/05/2023]
Abstract
Patients with prostate cancer (PCa) have a lower docetaxel exposure for both intravenous (1.8-fold) and oral administration (2.4-fold) than patients with other solid cancers, which could influence efficacy and toxicity. An altered metabolism by cytochrome P450 3A (CYP3A) due to castration status might explain the observed difference in docetaxel pharmacokinetics. In this in vivo phenotyping, pharmacokinetic study, CYP3A activity defined by midazolam clearance (CL) was compared between patients with PCa and male patients with other solid tumors. All patients with solid tumors who did not use CYP3A-modulating drugs were eligible for participation. Patients received 2 mg midazolam orally and 1 mg midazolam intravenously on 2 consecutive days. Plasma concentrations were measured with a validated liquid chromatography-tandem mass spectrometry method. Genotyping was performed for CYP3A4 and CYP3A5. Nine patients were included in each group. Oral midazolam CL was 1.26-fold higher in patients with PCa compared to patients with other solid tumors (geometric mean [coefficient of variation], 94.1 [33.5%] L/h vs 74.4 [39.1%] L/h, respectively; P = .08). Intravenous midazolam CL did not significantly differ between the 2 groups (P = .93). Moreover, the metabolic ratio of midazolam to 1'-hydroxy midazolam did not differ between the 2 groups for both oral administration (P = .67) and intravenous administration (P = .26). CYP3A4 and CYP3A5 genotypes did not influence midazolam pharmacokinetics. The observed difference in docetaxel pharmacokinetics between both patient groups therefore appears to be explained neither by a difference in midazolam CL nor by a difference in metabolic conversion rate of midazolam.
Collapse
Affiliation(s)
- Lisa T van der Heijden
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Claire A Ribbers
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Marit A C Vermunt
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Dick Pluim
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Manon Acda
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Matthijs Tibben
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Hilde Rosing
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Joeri A J Douma
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, The Netherlands
- Department of Internal Medicine, Medisch Centrum Leeuwarden, Leeuwarden, The Netherlands
| | - Kishan Naipal
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, The Netherlands
| | - Andre M Bergman
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, The Netherlands
- Department of Oncogenomics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmaco-epidemiology and Clinical Pharmacology, Faculty of Science, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy & Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Division of Pharmacology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht Utrecht University, Utrecht, The Netherlands
- Department of Pharmacology, Princess Maxima Center, Utrecht, The Netherlands
| | - Frans L Opdam
- Department of Clinical Pharmacology, Division of Medical Oncology, Antoni van Leeuwenhoek/The Netherlands Cancer Institute, The Netherlands
| |
Collapse
|
4
|
Chua RW, Song KP, Ting ASY. Comparative analysis of antimicrobial compounds from endophytic Buergenerula spartinae from orchid. Antonie Van Leeuwenhoek 2023; 116:1057-1072. [PMID: 37597137 DOI: 10.1007/s10482-023-01870-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/08/2023] [Indexed: 08/21/2023]
Abstract
A rare fungal endophyte, identified as Buergenerula spartinae (C28), was isolated from the roots of Cymbidium orchids and was characterised and evaluated for its antimicrobial activities. Bio-guided fractionation revealed 4 fractions from B. spartinae (C28) having antibacterial activities against at least one bacterial pathogen tested (Bacillus cereus and Staphylococcus aureus). However, inhibitory activities were absent against pathogenic fungi (Ganoderma boninense, Pythium ultimum and Fusarium solani). Fraction 2 and fraction 4 of B. spartinae (C28) exhibited potent antibacterial activities against S. aureus (MIC: 0.078 mg/mL) and B. cereus (MIC: 0.313 mg/mL), respectively. LCMS analysis revealed the presence of antibacterial agents and antibiotics in fraction 2 (benoxinate, pyropheophorbide A, (-)-ormosanine and N-undecylbenzenesulfonic acid) and fraction 4 (kaempferol 3-p-coumarate, 6-methoxy naphthalene acetic acid, levofuraltadone, hinokitiol glucoside, 3-α(S)-strictosidine, pyropheophorbide A, 5'-hydroxystreptomycin, kanzonol N and 3-butylidene-7-hydroxyphthalide), which may be responsible for the antibacterial activities observed. Most of the bioactive compounds profiled from the antibacterial fractions were discovered for the first time from endophytic isolates (i.e. from B. spartinae (C28)). Buergenerula spartinae (C28) from Cymbidium sp. is therefore, an untapped resource of bioactive compounds for potential applications in healthcare and commercial industries.
Collapse
Affiliation(s)
- Ru Wei Chua
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Keang Peng Song
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Adeline Su Yien Ting
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
5
|
Hua X, Wu X, Xu K, Zhan P, Liu H, Zhang F, Lv T, Song Y. Zebrafish patient-derived xenografts accurately and quickly reproduce treatment outcomes in non–small cell lung cancer patients. Exp Biol Med (Maywood) 2022; 248:361-369. [PMID: 36533580 PMCID: PMC10159519 DOI: 10.1177/15353702221142612] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Zebrafish patient-derived xenograft (zPDX) models have shown great potential in predicting the short-term treatment response in various types of tumor cases. However, few studies have used zPDX models for drug screening in non–small cell lung cancer (NSCLC). We aimed to compare the treatment responses of patients with NSCLC with those of the corresponding zPDX models. Tumor cells were obtained from pleural fluid or biopsy procedures from patients with NSCLC and injected into the perivitelline space of zebrafish larvae. Then, the same antineoplastic drugs administered to the corresponding patient were tested in the successfully constructed zPDX model, for 3 days. Responses to treatment were compared. A total of 21 patients with advanced NSCLC were enrolled in our study, and 13 corresponding zPDX models were successfully established. Based on the clinical medication of enrolled patients, we provided a corresponding drug treatment to these zebrafish embryos, including epidermal growth factor receptor tyrosine kinase inhibitors (EGFR TKIs), pemetrexed/platinum (AP), or docetaxel/platinum (DP) administration. The chemosensitivity consistency rate between the clinical responses and those obtained from zPDXs was 76.9% (10/13). There was a high correlation between patient responses and the corresponding zPDX drug responses. Thus, zPDX can accurately and quickly reproduce patient responses to treatment with EGFR TKIs, AP, and DP and has a considerable potential to serve as a biological platform for predicting treatment effect on patients with NSCLC.
Collapse
Affiliation(s)
- Xin Hua
- Southeast University Medical College, Nanjing 210000, China
| | - Xiaodi Wu
- Medical School of Nanjing University, Nanjing 210000, China
| | - Ke Xu
- Medical School of Nanjing University, Nanjing 210000, China
| | - Ping Zhan
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Hongbing Liu
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Fang Zhang
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Tangfeng Lv
- Medical School of Nanjing University, Nanjing 210000, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| | - Yong Song
- Southeast University Medical College, Nanjing 210000, China
- Medical School of Nanjing University, Nanjing 210000, China
- Department of Respiratory and Critical Care Medicine, Jinling Hospital, Medical School of Nanjing University, Nanjing 210000, China
| |
Collapse
|