1
|
Ba R, Geffard E, Douillard V, Simon F, Mesnard L, Vince N, Gourraud PA, Limou S. Surfing the Big Data Wave: Omics Data Challenges in Transplantation. Transplantation 2022; 106:e114-e125. [PMID: 34889882 DOI: 10.1097/tp.0000000000003992] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In both research and care, patients, caregivers, and researchers are facing a leap forward in the quantity of data that are available for analysis and interpretation, marking the daunting "big data era." In the biomedical field, this quantitative shift refers mostly to the -omics that permit measuring and analyzing biological features of the same type as a whole. Omics studies have greatly impacted transplantation research and highlighted their potential to better understand transplant outcomes. Some studies have emphasized the contribution of omics in developing personalized therapies to avoid graft loss. However, integrating omics data remains challenging in terms of analytical processes. These data come from multiple sources. Consequently, they may contain biases and systematic errors that can be mistaken for relevant biological information. Normalization methods and batch effects have been developed to tackle issues related to data quality and homogeneity. In addition, imputation methods handle data missingness. Importantly, the transplantation field represents a unique analytical context as the biological statistical unit is the donor-recipient pair, which brings additional complexity to the omics analyses. Strategies such as combined risk scores between 2 genomes taking into account genetic ancestry are emerging to better understand graft mechanisms and refine biological interpretations. The future omics will be based on integrative biology, considering the analysis of the system as a whole and no longer the study of a single characteristic. In this review, we summarize omics studies advances in transplantation and address the most challenging analytical issues regarding these approaches.
Collapse
Affiliation(s)
- Rokhaya Ba
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| | - Estelle Geffard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Venceslas Douillard
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Françoise Simon
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Mount Sinai School of Medicine, New York, NY
| | - Laurent Mesnard
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
- Sorbonne Université, Paris, France
| | - Nicolas Vince
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Pierre-Antoine Gourraud
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
| | - Sophie Limou
- Université de Nantes, Centre Hospitalier Universitaire Nantes, Institute of Health and Medical Research, Centre de Recherche en Transplantation et Immunologie, UMR 1064, Institut de Transplantation Urologie-Néphrologie, Nantes, France
- Département Informatique et Mathématiques, Ecole Centrale de Nantes, Nantes, France
| |
Collapse
|
2
|
Abstract
PURPOSE OF REVIEW Organ transplantation research has led to the discovery of several interesting individual mechanistic pathways, molecules and potential drug targets but there are still no comprehensive studies that have addressed how these varied mechanisms work in unison to regulate the posttransplant immune response that drives kidney rejection and dysfunction. RECENT FINDINGS Systems biology is a rapidly expanding field that aims to integrate existing knowledge of molecular concepts and large-scale genomic and clinical datasets into networks that can be used in cutting edge computational models to define disease mechanisms in a holistic manner. Systems biology approaches have brought a paradigm shift from a reductionist view of biology to a wider agnostic assessment of disease from several lines of evidence. Although the complex nature of the posttransplant immune response makes it difficult to pinpoint mechanisms, systems biology is enabling discovery of unknown biological interactions using the cumulative power of genomic data sets, clinical data and endpoints, and improved computational methods for the systematic deconvolution of this response. SUMMARY An integrative systems biology approach that leverages genomic data from varied technologies, such as DNA sequencing, copy number variation, RNA sequencing, and methylation profiles along with long-term clinical follow-up data has the potential to define a framework that can be mined to provide novel insights for developing therapeutic interventions in organ transplantation.
Collapse
|
3
|
High Throughput Proteomic Exploration of Hypothermic Preservation Reveals Active Processes within the Cell Associated with Cold Ischemia Kinetic. Int J Mol Sci 2021; 22:ijms22052384. [PMID: 33673561 PMCID: PMC7956856 DOI: 10.3390/ijms22052384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/28/2022] Open
Abstract
The demand for organs to be transplanted increases pressure on procurement centers, to the detriment of organ quality, increasing complications. New preservation protocols are urgently needed, requiring an in-depth understanding of ischemia-reperfusion mechanisms. We performed a proteomic analysis using LC-MS/MS-TOF data analyzed through R software and Cytoscape's ClueGO application, comparing the proteome of kidney endothelial cells, key cell type, subjected to 3, 6, 12, 19, and 24 h of cold ischemia and 6 h reperfusion. Critical pathways such as energy metabolism, cytoskeleton structure/transport system, and gene transcription/translation were modulated. Important time windows were revealed: a-during the first 3 h, central proteins were upregulated within these pathways; b-the majority of these upregulations were maintained until 12 h cold ischemia time (CIT); c-after that time, the overall decrease in protein expression was observed; d-at reperfusion, proteins expressed in response to cold ischemia were all downregulated. This shows that cold ischemia is not a simple slowing down of metabolism, as deep changes take place within the proteome on major pathways. Time-sensitive expression of key protein reveals possible quality biomarkers as well as potential targets for new strategies to maintain or optimize organ quality.
Collapse
|
4
|
Pineda S, Sur S, Sigdel T, Nguyen M, Crespo E, Torija A, Meneghini M, Gomà M, Sirota M, Bestard O, Sarwal MM. Peripheral Blood RNA Sequencing Unravels a Differential Signature of Coding and Noncoding Genes by Types of Kidney Allograft Rejection. Kidney Int Rep 2020; 5:1706-1721. [PMID: 33102963 PMCID: PMC7569686 DOI: 10.1016/j.ekir.2020.07.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Peripheral blood (PB) molecular patterns characterizing the different effector immune pathways driving distinct kidney rejection types remain to be fully elucidated. We hypothesized that transcriptome analysis using RNA sequencing (RNAseq) in samples of kidney transplant patients would enable the identification of unique protein-coding and noncoding genes that may be able to segregate different rejection phenotypes. Methods We evaluated 37 biopsy-paired PB samples from the discovery cohort, with stable (STA), antibody-mediated rejection (AMR), and T cell-mediated rejection (TCMR) by RNAseq. Advanced machine learning tools were used to perform 3-way differential gene expression analysis to identify gene signatures associated with rejection. We then performed functional in silico analysis and validation by Fluidigm (San Francisco, CA) in 62 samples from 2 independent kidney transplant cohorts. Results We found 102 genes (63 coding genes and 39 noncoding genes) associated with AMR (54 upregulated), TCMR (23 upregulated), and STA (25 upregulated) perfectly clustered with each rejection phenotype and highly correlated with main histologic lesions (ρ = 0.91). For the genes associated with AMR, we found enrichment in regulation of endoplasmic reticulum stress, adaptive immunity, and Ig class-switching. In the validation, we found that the SIGLEC17P pseudogene and 9 SIGLEC17P-related coding genes were highly expressed among AMR but not in TCMR and STA samples. Conclusions This analysis identifies a critical gene signature in PB in kidney transplant patients undergoing AMR, sufficient to differentiate them from patients with TCMR and immunologically quiescent kidney allografts. Our findings provide the basis for new studies dissecting the role of noncoding genes in the pathophysiology of kidney allograft rejection and their potential value as noninvasive biomarkers of the rejection process.
Collapse
Affiliation(s)
- Silvia Pineda
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA.,Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA
| | - Swastika Sur
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA
| | - Tara Sigdel
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA
| | - Mark Nguyen
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA
| | - Elena Crespo
- Laboratory of Experimental Nephrology and Transplantation, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Alba Torija
- Laboratory of Experimental Nephrology and Transplantation, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Maria Meneghini
- Laboratory of Experimental Nephrology and Transplantation, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain.,Kidney Transplant Unit, Bellvitge University Hospital, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Montse Gomà
- Pathology Department, Bellvitge University Hospital, Barcelona University, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, California, USA.,Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Oriol Bestard
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA.,Laboratory of Experimental Nephrology and Transplantation, Institut d'Investigació Biomèdica de Bellvitge, Barcelona, Spain
| | - Minnie M Sarwal
- Division of Transplant Surgery, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
5
|
Zhang Z, Tang Y, Zhuang H, Lin E, Xie L, Feng X, Zeng J, Liu Y, Liu J, Yu Y. Identifying 4 Novel lncRNAs as Potential Biomarkers for Acute Rejection and Graft Loss of Renal Allograft. J Immunol Res 2020; 2020:2415374. [PMID: 33376751 PMCID: PMC7739051 DOI: 10.1155/2020/2415374] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/28/2020] [Accepted: 11/13/2020] [Indexed: 02/05/2023] Open
Abstract
Acute rejection (AR) after kidney transplant is one of the major obstacles to obtain ideal graft survival. Reliable molecular biomarkers for AR and renal allograft loss are lacking. This study was performed to identify novel long noncoding RNAs (lncRNAs) for diagnosing AR and predicting the risk of graft loss. The several microarray datasets with AR and nonrejection specimens of renal allograft downloaded from Gene Expression Omnibus database were analyzed to screen differentially expressed lncRNAs (DElncRNAs) and mRNAs (DEmRNAs). Univariate and multivariate Cox regression analyses were used to identify optimal prognosis-related DElncRNAs for constructing a risk score model. 39 common DElncRNAs and 185 common DEmRNAs were identified to construct a lncRNA-mRNA regulatory relationship network. DElncRNAs were revealed to regulate immune cell activation and proliferation. Then, 4 optimal DElncRNAs, ATP1A1-AS1, CTD-3080P12.3, EMX2OS, and LINC00645, were selected from 17 prognostic DElncRNAs to establish the 4-lncRNA risk score model. In the training set, the high-risk patients were more inclined to graft loss than the low-risk patients. Time-dependent receiver operating characteristics analysis revealed the model had good sensitivity and specificity in prediction of 1-, 2-, and 3-year graft survival after biopsy (AUC = 0.891, 0.836, and 0.733, respectively). The internal testing set verified the result well. Gene set enrichment analysis which expounded NOD-like receptor, the Toll-like receptor signaling pathways, and other else playing important role in immune response was enriched by the 4 lncRNAs. Allograft-infiltrating immune cells analysis elucidated the expression of 4 lncRNAs correlated with gamma delta T cells and eosinophils, etc. Our study identified 4 novel lncRNAs as potential biomarkers for AR of renal allograft and constructed a lncRNA-based model for predicting the risk of graft loss, which would provide new insights into mechanisms of AR.
Collapse
Affiliation(s)
- Zedan Zhang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Hongkai Zhuang
- Shantou University Medical College, Shantou 515041, China
| | - Enyu Lin
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
- Shantou University Medical College, Shantou 515041, China
| | - Lu Xie
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Xiaoqiang Feng
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanjun Liu
- Department of Immunology, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yuming Yu
- Department of Urology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| |
Collapse
|
6
|
Sortica DA, Crispim D, Bauer AC, Nique PS, Nicoletto BB, Crestani RP, Staehler JT, Manfro RC, Canani LH. K121Q polymorphism in the Ectonucleotide Pyrophosphatase/Phosphodiesterase 1 gene is associated with acute kidney rejection. PLoS One 2019; 14:e0219062. [PMID: 31318911 PMCID: PMC6639061 DOI: 10.1371/journal.pone.0219062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 06/15/2019] [Indexed: 12/31/2022] Open
Abstract
The identification of risk factors for acute rejection (AR) may lead to strategies to improve success of kidney transplantation. Ectonucleotidases are ectoenzymes that hydrolyze extracellular nucleotides into nucleosides, modulating the purinergic signaling. Some members of the Ectonucleotidase family have been linked to transplant rejection processes. However, the association of Ectonucleotide Pyrophosphatase / Phosphodiesterase 1 (ENPP1) with AR has not yet been evaluated. The aim of this study was to evaluate the association between the K121Q polymorphism of ENPP1 gene and AR in kidney transplant patients. We analyzed 449 subjects without AR and 98 with AR from a retrospective cohort of kidney transplant patients from Southern Brazil. K121Q polymorphism was genotyped using allelic discrimination-real-time PCR. Cox regression analysis was used to evaluate freedom of AR in kidney transplant patients according to genotypes. Q allele frequency was 17.6% in recipients without AR and 21.9% in those with AR (P = 0.209). Genotype frequencies of the K121Q polymorphism were in Hardy-Weinberg equilibrium in non-AR patients (P = 0.70). The Q/Q genotype (recessive model) was associated with AR (HR = 2.83, 95% CI 1.08–7.45; P = 0.034) after adjusting for confounders factors. Our findings suggest a novel association between the ENPP1 121Q/Q genotype and AR in kidney transplant recipients.
Collapse
Affiliation(s)
- Denise A. Sortica
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Andrea C. Bauer
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Pamela S. Nique
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bruna B. Nicoletto
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Life Science Knowledge Area, Universidade de Caxias do Sul, Caxias do Sul, Rio Grande do Sul, Brazil, Nutrition Course, Área do Conhecimento de Ciências da Vida, Universidade de Caxias do Sul (UCS), Caxias do Sul, Brazil
| | - Ricieli P. Crestani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jennifer T. Staehler
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Roberto C. Manfro
- Division of Nephrology, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luis H. Canani
- Endocrine Division, Hospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduate Program in Medical Sciences: Endocrinology, Faculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
7
|
Abstract
This review is focused on present and future biomarkers, along with pharmacogenomics used in clinical practice for kidney transplantation. It aims to highlight biomarkers that could potentially be used to improve kidney transplant early and long-term graft survival, but also potentially patient co-morbidity. Future directions for improving outcomes are discussed, which include immune tolerance and personalising immunosuppression regimens.
Collapse
|
8
|
Qiu J, Chen Y, Huang G, Zhang Z, Chen L, Na N. Transforming growth factor-β activated long non-coding RNA ATB plays an important role in acute rejection of renal allografts and may impacts the postoperative pharmaceutical immunosuppression therapy. Nephrology (Carlton) 2018; 22:796-803. [PMID: 27414253 DOI: 10.1111/nep.12851] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/21/2016] [Accepted: 07/11/2016] [Indexed: 12/28/2022]
Abstract
AIM Long noncoding RNAs (lncRNAs) are novel intracellular noncoding ribonucleotides regulating the genome and proteome. The lncRNA activated by transforming growth factor β (TGF-β) (lncRNA-ATB) was discovered as a prognostic factor in hepatocellular carcinoma, gastric cancer, and colorectal cancer. However, little is known about the role of lncRNA-ATB in renal transplantation. This study aimed to assess lncRNA-ATB expression in renal transplant patients with acute kidney injury and explore its role in postoperative pharmaceutical immunosuppression therapy. METHODS We detected lncRNA-ATB expression in the kidney biopsies of a cohort of 72 patients with renal allograft rejection and 36 control transplant patients. lncRNA-ATB were overexpressed from lentiviral vectors in renal cells. RESULTS We found that lncRNA-ATB was remarkably upregulated in patients with acute rejection compared with controls. Meanwhile, lncRNA-ATB could influence the kidney cell phenotypes and impact the nephrotoxicity of immunosuppressive drug. CONCLUSION In conclusion, lncRNA-ATB are strongly altered in patients with acute rejection and may serve as a novel biomarker of acute kidney rejection, identifying patients with acute rejection and predicting loss of kidney function.
Collapse
Affiliation(s)
- Jiang Qiu
- Division of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yehui Chen
- Division of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gang Huang
- Division of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhi Zhang
- Division of Urology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Lizhong Chen
- Division of Organ Transplantation, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ning Na
- Division of Organ Transplantation, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
9
|
Reflections on the usefulness of extracorporeal photopheresis in renal transplant rejection: A concise review of the involved mechanisms and therapeutic perspectives. Transfus Apher Sci 2018; 57:115-117. [PMID: 29477942 DOI: 10.1016/j.transci.2018.02.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Renal rejection clinically represents a major cause of graft dysfunction and sadly the loss of the renal transplant. This is despite the considerable progress in immunosuppressive therapy. It is strongly believed that the complex immunologic network underlying the response against major histocompatibility molecules (MHC) is responsible for rejection, an unresolved issue that is, in part, not inhibited by the current prophylactic and therapeutic strategies. Extracorporeal photopheresis (ECP) is an effective cell therapy approach that was successfully used in immunomodulating heart rejection, acute and chronic GvHD, lung rejection and some selected autoimmune diseases. In this concise report we provide a brief review on the mechanisms of action and the use of ECP in acute and chronic renal allograft rejection.
Collapse
|
10
|
Chan-On C, Liberto JM, Sarwal MM. Mechanisms and biomarkers of immune quiescence in kidney transplantation. Hum Immunol 2018; 79:356-361. [PMID: 29408630 DOI: 10.1016/j.humimm.2018.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/26/2018] [Accepted: 01/30/2018] [Indexed: 12/14/2022]
Abstract
This review discusses the current understanding of biomarkers of immune quiescence based on reviews of published literature in kidney transplant operational tolerance and mechanistic studies based on a better characterization of the stable, well-functioning renal allograft.
Collapse
Affiliation(s)
- Chitranon Chan-On
- Division of Nephrology, Faculty of Medicine, Department of Internal Medicine, Khon Kaen University, Khon Kaen, Thailand; Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Juliane M Liberto
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States
| | - Minnie M Sarwal
- Division of Transplant Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
11
|
Establishing Biomarkers in Transplant Medicine: A Critical Review of Current Approaches. Transplantation 2017; 100:2024-38. [PMID: 27479159 DOI: 10.1097/tp.0000000000001321] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Although the management of kidney transplant recipients has greatly improved over recent decades, the assessment of individual risks remains highly imperfect. Individualized strategies are necessary to recognize and prevent immune complications early and to fine-tune immunosuppression, with the overall goal to improve patient and graft outcomes. This review discusses current biomarkers and their limitations, and recent advancements in the field of noninvasive biomarker discovery. A wealth of noninvasive monitoring tools has been suggested that use easily accessible biological fluids such as urine and blood, allowing frequent and sequential assessments of recipient's immune status. This includes functional cell-based assays and the evaluation of molecular expression on a wide spectrum of platforms. Nevertheless, the translation and validation of exploratory findings and their implementation into standard clinical practice remain challenging. This requires dedicated prospective interventional trials demonstrating that the use of these biomarkers avoids invasive procedures and improves patient or transplant outcomes.
Collapse
|
12
|
Sá H, Leal R, Rosa MS. Renal transplant immunology in the last 20 years: A revolution towards graft and patient survival improvement. Int Rev Immunol 2016; 36:182-203. [PMID: 27682364 DOI: 10.1080/08830185.2016.1225300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
To deride the hope of progress is the ultimate fatuity, the last word in poverty of spirit and meanness of mind. There is no need to be dismayed by the fact that we cannot yet envisage a definitive solution of our problems, a resting-place beyond which we need not try to go. -P.B. Medawar, 1969 * Thomas E. Starlz, also known as the Father of Clinical Transplantation, once said that organ transplantation was the supreme exception to the rule that most major advances in medicine spring from discoveries in basic science [Starzl T. The mystique of organ transplantation. J Am Coll Surg 2005 Aug;201(2):160-170]. In fact, the first successful identical-twin kidney transplantation performed by Murray's team in December 1954 (Murray J et al. Renal homotransplantations in identical twins. Surg Forum 1955;6:432-436) was the example of an upside down translation medicine: Human clinical transplantation began and researchers tried to understand the underlying immune response and how to control the powerful rejection pathways through experimental models. In the last 20 years, we have witnessed an amazing progress in the knowledge of immunological mechanisms regarding alloimmune response and an outstanding evolution on the identification and characterization of major and minor histocompatibility antigens. This review presents an historical and clinical perspective of those important advances in kidney transplantation immunology in the last 20 years, which contributed to the improvement in patients' quality of life and the survival of end-stage renal patients. In spite of these significant progresses, some areas still need substantial progress, such as the definition of non-invasive biomarkers for acute rejection; the continuous reduction of immunosuppression; the extension of graft survival, and finally the achievement of real graft tolerance extended to HLA mismatch donor: recipient pairs.
Collapse
Affiliation(s)
- Helena Sá
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal.,b Faculty of Medicine , University of Coimbra , Coimbra , Portugal.,c Immunology Center, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rita Leal
- a Department of Nephrology , Centro Hospitalar e Universitário de Coimbra , Coimbra , Portugal
| | | |
Collapse
|
13
|
Akhtar MZ, Huang H, Kaisar M, Lo Faro ML, Rebolledo R, Morten K, Heather LC, Dona A, Leuvenink HG, Fuggle SV, Kessler BM, Pugh CW, Ploeg RJ. Using an Integrated -Omics Approach to Identify Key Cellular Processes That Are Disturbed in the Kidney After Brain Death. Am J Transplant 2016; 16:1421-40. [PMID: 26602379 DOI: 10.1111/ajt.13626] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 01/25/2023]
Abstract
In an era where we are becoming more reliant on vulnerable kidneys for transplantation from older donors, there is an urgent need to understand how brain death leads to kidney dysfunction and, hence, how this can be prevented. Using a rodent model of hemorrhagic stroke and next-generation proteomic and metabolomic technologies, we aimed to delineate which key cellular processes are perturbed in the kidney after brain death. Pathway analysis of the proteomic signature of kidneys from brain-dead donors revealed large-scale changes in mitochondrial proteins that were associated with altered mitochondrial activity and morphological evidence of mitochondrial injury. We identified an increase in a number of glycolytic proteins and lactate production, suggesting a shift toward anaerobic metabolism. Higher amounts of succinate were found in the brain death group, in conjunction with increased markers of oxidative stress. We characterized the responsiveness of hypoxia inducible factors and found this correlated with post-brain death mean arterial pressures. Brain death leads to metabolic disturbances in the kidney and alterations in mitochondrial function and reactive oxygen species generation. This metabolic disturbance and alteration in mitochondrial function may lead to further cellular injury. Conditioning the brain-dead organ donor by altering metabolism could be a novel approach to ameliorate this brain death-induced kidney injury.
Collapse
Affiliation(s)
- M Z Akhtar
- Centre for Cellular and Molecular Physiology, Oxford University, Oxford, UK.,Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK
| | - H Huang
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK.,Target Discovery Institute, Oxford University, Oxford, UK
| | - M Kaisar
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK.,Target Discovery Institute, Oxford University, Oxford, UK
| | - M L Lo Faro
- Centre for Cellular and Molecular Physiology, Oxford University, Oxford, UK.,Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK
| | - R Rebolledo
- Surgical Research Laboratory, University of Groningen, Groningen, the Netherlands
| | - K Morten
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Oxford, UK
| | - L C Heather
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - A Dona
- Department of Surgery, Imperial College, London, UK.,Kolling Institute for Medical Research, The University of Sydney, New South Wales, Australia
| | - H G Leuvenink
- Surgical Research Laboratory, University of Groningen, Groningen, the Netherlands
| | - S V Fuggle
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK
| | - B M Kessler
- Target Discovery Institute, Oxford University, Oxford, UK
| | - C W Pugh
- Centre for Cellular and Molecular Physiology, Oxford University, Oxford, UK
| | - R J Ploeg
- Oxford Transplant Centre, Nuffield Department of Surgical Sciences, Churchill Hospital, Oxford, UK
| |
Collapse
|
14
|
Epigenetics in Kidney Transplantation: Current Evidence, Predictions, and Future Research Directions. Transplantation 2016; 100:23-38. [PMID: 26356174 DOI: 10.1097/tp.0000000000000878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Epigenetic modifications are changes to the genome that occur without any alteration in DNA sequence. These changes include cytosine methylation of DNA at cytosine-phosphate diester-guanine dinucleotides, histone modifications, microRNA interactions, and chromatin remodeling complexes. Epigenetic modifications may exert their effect independently or complementary to genetic variants and have the potential to modify gene expression. These modifications are dynamic, potentially heritable, and can be induced by environmental stimuli or drugs. There is emerging evidence that epigenetics play an important role in health and disease. However, the impact of epigenetic modifications on the outcomes of kidney transplantation is currently poorly understood and deserves further exploration. Kidney transplantation is the best treatment option for end-stage renal disease, but allograft loss remains a significant challenge that leads to increased morbidity and return to dialysis. Epigenetic modifications may influence the activation, proliferation, and differentiation of the immune cells, and therefore may have a critical role in the host immune response to the allograft and its outcome. The epigenome of the donor may also impact kidney graft survival, especially those epigenetic modifications associated with early transplant stressors (e.g., cold ischemia time) and donor aging. In the present review, we discuss evidence supporting the role of epigenetic modifications in ischemia-reperfusion injury, host immune response to the graft, and graft response to injury as potential new tools for the diagnosis and prediction of graft function, and new therapeutic targets for improving outcomes of kidney transplantation.
Collapse
|
15
|
Dorr C, Wu B, Guan W, Muthusamy A, Sanghavi K, Schladt DP, Maltzman JS, Scherer SE, Brott MJ, Matas AJ, Jacobson PA, Oetting WS, Israni AK. Differentially expressed gene transcripts using RNA sequencing from the blood of immunosuppressed kidney allograft recipients. PLoS One 2015; 10:e0125045. [PMID: 25946140 PMCID: PMC4422721 DOI: 10.1371/journal.pone.0125045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 03/09/2015] [Indexed: 02/05/2023] Open
Abstract
We performed RNA sequencing (RNAseq) on peripheral blood mononuclear cells (PBMCs) to identify differentially expressed gene transcripts (DEGs) after kidney transplantation and after the start of immunosuppressive drugs. RNAseq is superior to microarray to determine DEGs because it’s not limited to available probes, has increased sensitivity, and detects alternative and previously unknown transcripts. DEGs were determined in 32 adult kidney recipients, without clinical acute rejection (AR), treated with antibody induction, calcineurin inhibitor, mycophenolate, with and without steroids. Blood was obtained pre-transplant (baseline), week 1, months 3 and 6 post-transplant. PBMCs were isolated, RNA extracted and gene expression measured using RNAseq. Principal components (PCs) were computed using a surrogate variable approach. DEGs post-transplant were identified by controlling false discovery rate (FDR) at < 0.01 with at least a 2 fold change in expression from pre-transplant. The top 5 DEGs with higher levels of transcripts in blood at week 1 were TOMM40L, TMEM205, OLFM4, MMP8, and OSBPL9 compared to baseline. The top 5 DEGs with lower levels at week 1 post-transplant were IL7R, KLRC3, CD3E, CD3D, and KLRC2 (Striking Image) compared to baseline. The top pathways from genes with lower levels at 1 week post-transplant compared to baseline, were T cell receptor signaling and iCOS-iCOSL signaling while the top pathways from genes with higher levels than baseline were axonal guidance signaling and LXR/RXR activation. Gene expression signatures at month 3 were similar to week 1. DEGs at 6 months post-transplant create a different gene signature than week 1 or month 3 post-transplant. RNAseq analysis identified more DEGs with lower than higher levels in blood compared to baseline at week 1 and month 3. The number of DEGs decreased with time post-transplant. Further investigations to determine the specific lymphocyte(s) responsible for differential gene expression may be important in selecting and personalizing immune suppressant drugs and may lead to targeted therapies.
Collapse
Affiliation(s)
- Casey Dorr
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Baolin Wu
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Weihua Guan
- Division of Biostatistics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Amutha Muthusamy
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
| | - Kinjal Sanghavi
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - David P. Schladt
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
| | - Jonathan S. Maltzman
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Steven E. Scherer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Dallas, Texas, United States of America
| | - Marcia J. Brott
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Arthur J. Matas
- Department of Surgery, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Pamala A. Jacobson
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - William S. Oetting
- College of Pharmacy, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ajay K. Israni
- Minneapolis Medical Research Foundation, Minneapolis, Minnesota, United States of America
- Department of Medicine, Hennepin County Medical Center, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Epidemiology and Community Health, University of Minnesota School of Medicine, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
16
|
Baron D, Giral M, Brouard S. Reconsidering the detection of tolerance to individualize immunosuppression minimization and to improve long-term kidney graft outcomes. Transpl Int 2015; 28:938-59. [DOI: 10.1111/tri.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/03/2015] [Accepted: 04/02/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Daniel Baron
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Magali Giral
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| | - Sophie Brouard
- INSERM; UMR 1064; Nantes France
- CHU de Nantes; ITUN; Nantes France
- Faculté de Médecine; Université de Nantes; Nantes France
| |
Collapse
|
17
|
Li X, Zhuang S. Recent advances in renal interstitial fibrosis and tubular atrophy after kidney transplantation. FIBROGENESIS & TISSUE REPAIR 2014; 7:15. [PMID: 25285155 PMCID: PMC4185272 DOI: 10.1186/1755-1536-7-15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/29/2014] [Indexed: 01/05/2023]
Abstract
Although kidney transplantation has been an important means for the treatment of patients with end stage of renal disease, the long-term survival rate of the renal allograft remains a challenge. The cause of late renal allograft loss, once known as chronic allograft nephropathy, has been renamed “interstitial fibrosis and tubular atrophy” (IF/TA) to reflect the histologic pattern seen on biopsy. The mechanisms leading to IF/TA in the transplanted kidney include inflammation, activation of renal fibroblasts, and deposition of extracellular matrix proteins. Identifying the mediators and factors that trigger IF/TA may be useful in early diagnosis and development of novel therapeutic strategies for improving long-term renal allograft survival and patient outcomes. In this review, we highlight the recent advances in our understanding of IF/TA from three aspects: pathogenesis, diagnosis, and treatment.
Collapse
Affiliation(s)
- Xiaojun Li
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Tongji University School of Medicine, Shanghai East Hospital, Shanghai, China ; Department of Medicine, Alpert Medical School of Brown University, Rhode Island Hospital, Middle House 301, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
18
|
Assessing the Metabolic Effects of Calcineurin Inhibitors in Renal Transplant Recipients by Urine Metabolic Profiling. Transplantation 2014; 98:195-201. [DOI: 10.1097/tp.0000000000000039] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
19
|
Chen W, Peng W, Huang J, Yu X, Tan K, Chen Y, Lin X, Chen D, Dai Y. Microarray analysis of long non-coding RNA expression in human acute rejection biopsy samples following renal transplantation. Mol Med Rep 2014; 10:2210-6. [PMID: 25198465 DOI: 10.3892/mmr.2014.2420] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 06/10/2014] [Indexed: 11/05/2022] Open
Abstract
Rejection is still a major obstacle in long-term allograft survival of renal transplant recipients. Long non‑coding RNAs (lncRNAs) are an important class of pervasive RNAs involved in a variety of biological functions, and which are often found to be differentially expressed between healthy and pathological conditions. The aim of this study was to compare the expression profiles of lncRNAs between samples from acute rejection following kidney transplantation and control samples. Three patients were enrolled, diagnosed by renal biopsy with acute rejection upon kidney transplantation. We used lncRNA microarrays to study the lncRNA expression profiles in the kidney biopsies of these patients and in kidneys from healthy donors. Reverse transcription‑quantitative polymerase chain reaction (RT-qPCR) was used to validate the microarray results. In addition, potential functions of the identified lncRNAs were further explored by searching the UCSC, RNAdb, RefSeq and NRED databases. Five candidate lncRNAs displaying differential expression in acute rejection samples were validated by RT-qPCR. The results were in agreement with the microarray data. Among the identified lncRNAs, certain have been previously identified in relevant conditions, thereby supporting previous evidence, but certain may constitute novel biomarker candidates. This is the first report to date using lncRNA microarrays to identify unique expression signatures of acute rejection in transplant biopsies. Our data indicate that lncRNAs are potentially involved in the pathogenesis of acute rejection. Our results may have important implications in the identification of diagnostic biomarkers, as well as in the understanding and treatment of acute rejection following renal transplantation.
Collapse
Affiliation(s)
- Wenbiao Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Wujian Peng
- Third People's Hospital of Shenzhen, Guangdong Medical College, Shenzhen, Guangdong 518112, P.R. China
| | - Jianrong Huang
- Third People's Hospital of Shenzhen, Guangdong Medical College, Shenzhen, Guangdong 518112, P.R. China
| | - Xiangqi Yu
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Kuibi Tan
- Ningbo Second Hospital, Ningbo, Zhejiang 315100, P.R. China
| | - Yuyu Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Xiaocong Lin
- Institute of Biochemistry and Molecular Biology, Guangdong Medical College, Zhanjiang, Guangdong 524000, P.R. China
| | - Deheng Chen
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Yong Dai
- Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| |
Collapse
|
20
|
Maluf DG, Dumur CI, Suh JL, Scian MJ, King AL, Cathro H, Lee JK, Gehrau RC, Brayman KL, Gallon L, Mas VR. The urine microRNA profile may help monitor post-transplant renal graft function. Kidney Int 2014; 85:439-49. [PMID: 24025639 PMCID: PMC3946645 DOI: 10.1038/ki.2013.338] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 06/06/2013] [Accepted: 06/20/2013] [Indexed: 02/08/2023]
Abstract
Noninvasive, cost-effective biomarkers that allow accurate monitoring of graft function are needed in kidney transplantation. Since microRNAs (miRNAs) have emerged as promising disease biomarkers, we sought to establish an miRNA signature in urinary cell pellets comparing kidney transplant patients diagnosed with chronic allograft dysfunction (CAD) with interstitial fibrosis and tubular atrophy and those recipients with normal graft function. Overall, we evaluated 191 samples from 125 deceased donor primary kidney transplant recipients in the discovery, initial validation, and the longitudinal validation studies for noninvasive monitoring of graft function. Of 1733 mature miRNAs studied using microarrays, 22 were found to be differentially expressed between groups. Ontology and pathway analyses showed inflammation as the principal biological function associated with these miRNAs. Twelve selected miRNAs were longitudinally evaluated in urine samples of an independent set of 66 patients, at two time points after kidney transplant. A subset of these miRNAs was found to be differentially expressed between groups early after kidney transplant before histological allograft injury was evident. Thus, a panel of urine miRNAs was identified as potential biomarkers for monitoring graft function and anticipating progression to CAD in kidney transplant patients.
Collapse
Affiliation(s)
- Daniel G Maluf
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
| | - Catherine I Dumur
- Virginia Commonwealth University, Department of Pathology, PO Box 980662, VA 23298-0662
| | - Jihee L Suh
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
| | - Mariano J Scian
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
| | - Anne L King
- Virginia Commonwealth University, Division of Transplant, PO Box 980645, VA 23219-0645
| | - Helen Cathro
- Virginia Commonwealth University, Department of Pathology, PO Box 980662, VA 23298-0662
| | - Jae K Lee
- University of Virginia, Division of Biostatistics, Department of Public Health Sciences, PO Box 800717, VA 22908-0717
| | - Ricardo C Gehrau
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
| | - Kenneth L Brayman
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
| | - Lorenzo Gallon
- Northwestern University, Division of Nephrology, Department of Internal Medicine, Comprehensive Transplant Center, Chicago, IL 60611
| | - Valeria R Mas
- University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679
- Corresponding author: Valeria Mas, Ph.D., Associate Professor Research Surgery, Co-Director Transplant Research, Director Translational Genomics Transplant Laboratory, Transplant Division, Department of Surgery, University of Virginia, Department of Surgery, PO Box 800679, Charlottesville, VA 22908-0679,
| |
Collapse
|
21
|
Günther OP, Chen V, Freue GC, Balshaw RF, Tebbutt SJ, Hollander Z, Takhar M, McMaster WR, McManus BM, Keown PA, Ng RT. A computational pipeline for the development of multi-marker bio-signature panels and ensemble classifiers. BMC Bioinformatics 2012; 13:326. [PMID: 23216969 PMCID: PMC3575305 DOI: 10.1186/1471-2105-13-326] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 12/04/2012] [Indexed: 02/08/2023] Open
Abstract
Background Biomarker panels derived separately from genomic and proteomic data and with a variety of computational methods have demonstrated promising classification performance in various diseases. An open question is how to create effective proteo-genomic panels. The framework of ensemble classifiers has been applied successfully in various analytical domains to combine classifiers so that the performance of the ensemble exceeds the performance of individual classifiers. Using blood-based diagnosis of acute renal allograft rejection as a case study, we address the following question in this paper: Can acute rejection classification performance be improved by combining individual genomic and proteomic classifiers in an ensemble? Results The first part of the paper presents a computational biomarker development pipeline for genomic and proteomic data. The pipeline begins with data acquisition (e.g., from bio-samples to microarray data), quality control, statistical analysis and mining of the data, and finally various forms of validation. The pipeline ensures that the various classifiers to be combined later in an ensemble are diverse and adequate for clinical use. Five mRNA genomic and five proteomic classifiers were developed independently using single time-point blood samples from 11 acute-rejection and 22 non-rejection renal transplant patients. The second part of the paper examines five ensembles ranging in size from two to 10 individual classifiers. Performance of ensembles is characterized by area under the curve (AUC), sensitivity, and specificity, as derived from the probability of acute rejection for individual classifiers in the ensemble in combination with one of two aggregation methods: (1) Average Probability or (2) Vote Threshold. One ensemble demonstrated superior performance and was able to improve sensitivity and AUC beyond the best values observed for any of the individual classifiers in the ensemble, while staying within the range of observed specificity. The Vote Threshold aggregation method achieved improved sensitivity for all 5 ensembles, but typically at the cost of decreased specificity. Conclusion Proteo-genomic biomarker ensemble classifiers show promise in the diagnosis of acute renal allograft rejection and can improve classification performance beyond that of individual genomic or proteomic classifiers alone. Validation of our results in an international multicenter study is currently underway.
Collapse
Affiliation(s)
- Oliver P Günther
- NCE CECR Prevention of Organ Failure (PROOF) Centre of Excellence, Vancouver, BC, V6Z 1Y6, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
The establishment of human embryonic stem cell lines (hESCs) created the basis for new approaches in regenerative medicine and drug discovery. Despite the potential of hESCs for cell based therapies, ethical controversies limit their use. These obstacles could be overcome by induced pluripotent stem cells (iPSCs) that are generated by reprogramming somatic cells. Before iPSCs can be used for clinical applications, however, they must be thoroughly analyzed for aberrations in the genome, epigenome, transcriptome, and proteome. Here, we review how 'omics' technologies can be employed for a quantitative and definitive assessment of these cells.
Collapse
|
23
|
Sigdel TK, Gao X, Sarwal MM. Protein and peptide biomarkers in organ transplantation. Biomark Med 2012; 6:259-71. [PMID: 22731899 DOI: 10.2217/bmm.12.29] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Organ transplantation is the optimal treatment choice for end-stage organ failure in pediatric patients. The ideal maintenance of a transplanted organ requires efficient monitoring tools and an effective individualized post-transplant treatment plan. Currently available post-transplant monitoring options are not ideal because of their invasiveness or their lack of sensitivity and specificity when providing an accurate assessment of transplant injury. Current research on proteins and peptides, including mass spectrometry-based proteomics, can identify novel surrogate protein and peptide biomarkers that can assist in monitoring the graft in order to correctly assess the status of the transplanted organ. In this article, we have critically reviewed current relevant literature to highlight the importance of protein and peptide biomarkers in the field of pediatric organ transplantation, the status of research findings in the field of protein and peptide biomarkers in different organ transplantation and factors that impact and inhibit the progression of protein biomarker discovery in the field of solid-organ transplantation in pediatrics.
Collapse
Affiliation(s)
- Tara K Sigdel
- California Pacific Medical Center - Research Institute, San Francisco, USA.
| | | | | |
Collapse
|
24
|
Nicolini C, Bragazzi N, Pechkova E. Nanoproteomics enabling personalized nanomedicine. Adv Drug Deliv Rev 2012; 64:1522-31. [PMID: 22820526 DOI: 10.1016/j.addr.2012.06.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 06/22/2012] [Accepted: 06/28/2012] [Indexed: 02/01/2023]
Abstract
Nucleic Acid Programmable Protein Arrays utilize a complex mammalian cell free expression system to produce proteins in situ. In alternative to fluorescent-labeled approaches a new label free method, emerging from the combined utilization of three independent and complementary nanotechnological approaches, appears capable to analyze protein function and protein-protein interaction in studies promising for personalized medicine. Quartz Micro Circuit nanogravimetry, based on frequency and dissipation factor, mass spectrometry and anodic porous alumina overcomes indeed the limits of correlated fluorescence detection plagued by the background still present after extensive washes. This could be further optimized by a homogeneous and well defined bacterial cell free expression system capable to realize the ambitious objective to quantify the regulatory protein networks in humans. Implications for personalized medicine of the above label free protein array using different test genes proteins are reported.
Collapse
|
25
|
Racapé M, Bragazzi N, Sivozhelezov V, Danger R, Pechkova E, Duong Van Huyen JP, Soulillou JP, Brouard S, Nicolini C. SMILE silencing and PMA activation gene networks in HeLa cells: comparison with kidney transplantation gene networks. J Cell Biochem 2012; 113:1820-32. [PMID: 22134986 DOI: 10.1002/jcb.24013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent findings indicated that the SMILE gene may be involved in kidney graft operational tolerance in human. This gene was found to be up-regulated in blood from patients with a well functioning kidney transplant in the absence of immunosuppression compared to other transplanted recipients with clinically different status. A microarray study of SMILE knock-down and phorbol 12-myristate 13-acetate (PMA) activation in HeLa cells was herein compared to our earlier analysis based on microarray data of kidney allograft tolerance and rejection in humans and in a rat model of allograft transplantation to determine possible new genes and gene networks involved in kidney transplantation. The nearest neighbors at the intersection of the SMILE knock-down network with the human tolerance/rejection networks are shown to be NPHS1 and ARRB2, the former (Nephrin) being involved in kidney podocyte function, and the decrease of the latter (Arrestin β2) being recently shown to be involved in monocyte activation during acute kidney allograft rejection in rat. Moreover, another one of the neighbors at the intersection of SMILE network and tolerance/rejection networks is XBP-1, that we report previously to be increased, at a transcript level, after ER stress in SMILE silenced cells. Finally, in this study, we also show that topological properties (both local and global) of joint SMILE knock-down network-tolerance/rejection networks and joint PMA activation network-tolerance/rejection networks in rat and human are essentially different, likely due to the inherent nature of the gene SMILE and the mitogen PMA, that do not act the same way on genes and do not interfere the same way on networks. We also show that interestingly SMILE networks contain more feed-forward loop (FFL) motifs and thus SMILE calls for a more fine-tuned genetic regulation.
Collapse
Affiliation(s)
- M Racapé
- INSERM U643, Institut de Transplantation Et de Recherche en Transplantation (ITERT), Nantes F-44093, France
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Romagnani P, Crescioli C. CXCL10: a candidate biomarker in transplantation. Clin Chim Acta 2012; 413:1364-73. [PMID: 22366165 DOI: 10.1016/j.cca.2012.02.009] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/10/2012] [Accepted: 02/10/2012] [Indexed: 10/28/2022]
Abstract
Interferon (IFN) γ-induced protein 10 kDa (IP-10) or C-X-C motif chemokine 10 (CXCL10) is a small cytokine belonging to the CXC chemokine family. This family of signaling molecules is known to control several biological functions and to also play pivotal roles in disease initiation and progression. By binding to its specific cognate receptor CXCR3, CXCL10 critically regulates chemotaxis during several immune-inflammatory processes. In particular, this chemokine controls chemotaxis during the inflammatory response resulting from allograft rejection after transplantation. Interestingly, a strong association has been described between CXCL10 production, immune response and the fate of the graft following allotransplantation. Enhanced CXCL10 production has been observed in recipients of transplants of different organs. This enhanced production likely comes from either the graft or the immune cells and is correlated with an increase in the concentration of circulating CXCL10. Because CXCL10 can be easily measured in the serum and plasma from a patient, the detection and quantitation of circulating CXCL10 could be used to reveal a transplant recipient's immune status. The purpose of this review is to examine the critical role of CXCL10 in the pathogenesis of allograft rejection following organ transplantation. This important role highlights the potential utilization of CXCL10 not only as a therapeutic target but also as a biomarker to predict the severity of rejection, to monitor the inflammatory status of organ recipients and, hopefully, to fine-tune patient therapy in transplantation.
Collapse
Affiliation(s)
- Paola Romagnani
- Excellence Center for Research, Transfer and High Education (DENOthe), University of Florence, 50139 Florence, Italy
| | | |
Collapse
|
27
|
Abstract
Over the last decade, the search for gene variants with the potential to influence transplant outcomes or predispose individuals to host-recipient-related phenotypes has generated a considerable number of studies with conflicting results. Thousands of genotypes have been associated with complex traits related to transplant medicine, including acute rejection, immunosuppressive drug metabolism and side effects, infections, long-term outcomes, and cardiovascular complications. However, these efforts have given disappointing results, both in terms of gaining understanding of the biological basis of disease and in patient management. The methodological weaknesses that constitute the major limitations of most of these studies have been discussed widely. A new generation of approaches is needed to understand the relationship between gene variants and complex kidney transplantation traits. These approaches should be global, to generate original pathophysiological hypotheses, and should rely on advanced genomic tools, including Genome Wide Association studies and Whole Genome Sequencing technologies. Such enterprises will only be successful with the creation of international consortiums that connect partners in clinical, industrial, and academic transplant medicine.
Collapse
|