1
|
do Nascimento Gonçalves N, Caldas HC, da Silva Florim GM, Sormani GM, Arantes LMRB, Sorroche BP, Baptista MASF, Fernandes-Charpiot IMM, Nascimento-Filho CHV, de Castilho RM, Abbud-Filho M. Distinct global DNA methylation and NF-κB expression profile of preimplantation biopsies from ideal and non-ideal kidneys. J Nephrol 2022; 35:1831-1840. [PMID: 35524842 DOI: 10.1007/s40620-022-01341-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Epigenetic mechanisms may affect the ideal and non-ideal kidneys selected for transplantation and their inflammatory gene expression profile differently and may contribute to poor clinical outcomes. OBJECTIVE Study the Global DNA methylation and the expression profiles of the DNA methyltransferases (DNMTs) and nuclear factor kappa B (NF-κB) in preimplantation kidney biopsies from ideal and non-ideal kidneys (expanded criteria donor (ECD) and with KDPI > 85%). METHODS In a sample consisting of 45 consecutive pre-implantation biopsies, global DNA methylation levels were detected by LINE-1 repeated elements using bisulfite pyrosequencing. DNMT gene expression was assessed by real-time quantitative polymerase chain reaction, and NF-κB protein expression by immunofluorescence. RESULTS ECD kidneys displayed increased methylation levels in LINE-1, and DNMT1 and DNMT3B expression was upregulated when comparing ECD to standard criteria donor kidneys. Similarly, kidneys with KDPI > 85% exhibited increased LINE-1 methylation and DNMT1 upregulation when compared to a KDPI ≤ 85%. NF-κB protein expression levels were greatly increased in both types of non-ideal kidneys compared to ideal kidneys. Moreover, hypermethylation of LINE-1 was associated with cold ischemia time > 20 h and ECD kidney classification. CONCLUSIONS This study shows that global DNA hypermethylation and high expression of NF-κB occurred in both types of non-ideal kidneys and were associated with prolonged cold ischemia time. Global DNA methylation can be a useful tool to assess non-ideal kidneys and hence, could be used to expand the pool of kidneys donors.
Collapse
Affiliation(s)
- Naiane do Nascimento Gonçalves
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | - Heloisa Cristina Caldas
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | - Greiciane Maria da Silva Florim
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | - Giovanna Mattiello Sormani
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | | | | | - Maria Alice Sperto Ferreira Baptista
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | - Ida Maria Maximina Fernandes-Charpiot
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil
| | | | - Rogério Moraes de Castilho
- Laboratory of Epithelial Biology, Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Mario Abbud-Filho
- Department of Medicine, Faculdade de Medicina de São José do Rio Preto (FAMERP), Laboratório de Imunologia e Transplante Experimental (LITEX), Hospital de Base, Av. Brigadeiro Faria Lima, 5416, São Jose do Rio Preto, SP, 15090-000, Brazil.
| |
Collapse
|
2
|
Friedman O, Carmel N, Sela M, Abu Jabal A, Inbal A, Ben Hamou M, Krelin Y, Gur E, Shani N. Immunological and inflammatory mapping of vascularized composite allograft rejection processes in a rat model. PLoS One 2017; 12:e0181507. [PMID: 28746417 PMCID: PMC5528841 DOI: 10.1371/journal.pone.0181507] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 07/03/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Hand and face vascularized composite allotransplantation (VCA) is an evolving and challenging field with great opportunities. During VCA, massive surgical damage is inflicted on both donor and recipient tissues, which may contribute to the high VCA rejection rates. To segregate between the damage-induced and rejection phase of post-VCA responses, we compared responses occurring up to 5 days following syngeneic versus allogeneic vascularized groin flap transplantations, culminating in transplant acceptance or rejection, respectively. METHODS The immune response elicited upon transplantation of a syngeneic versus allogeneic vascularized groin flap was compared at Post-operative days 2 or 5 by histology, immunohistochemistry and by broad-scope gene and protein analyses using quantitative real-time PCR and Multiplex respectively. RESULTS Immune cell infiltration began at the donor-recipient interface and paralleled expression of a large group of wound healing-associated genes in both allografts and syngrafts. By day 5 post-transplantation, cell infiltration spread over the entire allograft but remained confined to the wound site in the syngraft. This shift correlated with upregulation of IL-18, INFg, CXCL9, 10 and 11, CCL2, CCL5, CX3CL1 and IL-10 in the allograft only, suggesting their role in the induction of the anti-alloantigen adaptive immune response. CONCLUSIONS High resemblance between the cues governing VCA and solid organ rejection was observed. Despite this high resemblance we describe also, for the first time, a damage induced inflammatory component in VCA rejection as immune cell infiltration into the graft initiated at the surgical damage site spreading to the entire allograft only at late stage rejection. We speculate that the highly inflammatory setting created by the unique surgical damage during VCA may enhance acute allograft rejection.
Collapse
Affiliation(s)
- Or Friedman
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Narin Carmel
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Meirav Sela
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ameen Abu Jabal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Amir Inbal
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Ben Hamou
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yakov Krelin
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Gur
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Nir Shani
- The Plastic Reconstructive Surgery Department, Tel Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
3
|
DeWolf SE, Shigeoka AA, Scheinok A, Kasimsetty SG, Welch AK, McKay DB. Expression of TLR2, NOD1, and NOD2 and the NLRP3 Inflammasome in Renal Tubular Epithelial Cells of Male versus Female Mice. Nephron Clin Pract 2017; 137:68-76. [PMID: 28614830 DOI: 10.1159/000456016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/03/2017] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gender-biased outcomes are associated with acute kidney injury (AKI) and human and animal studies have shown that females are preferentially protected from renal ischemia. However, the reason for this is not known. One clue might lie with pattern recognition receptors (PRRs), which are triggers of ischemic injury when ligated by molecules in the ischemic milieu. Several PRR families are expressed by renal tubular epithelial cells (RTEs) and incite cell death signaling and production of pro-inflammatory molecules. Blockade of specific PRRs (e.g., TLR2, NOD1, NOD2, and NLRP3) provides highly significant protection from ischemic RTE injury. As a first step to understand gender-biased outcomes of AKI, we tested whether constitutive gender-based differences exist in expression of these PRRS in RTEs. METHODS To determine whether PRR expression differences exist, primary RTEs isolated from male and female WT kidneys were examined by FACS, qPCR, and Western Blot for expression of TLR2, NOD1, NOD2, and NLRP3 inflammasome components. RESULTS No RTE gender-based differences in TLR2, NOD1, NOD2, NLRP3, or ASC were found. RTEs from female kidneys had approximately half the mRNA, but the same protein concentration of pro-caspase-1 compared to RTEs isolated from male kidneys. CONCLUSIONS Our findings indicate that intrinsic gender differences in RTE expression of TLR2, NOD1, NOD2, NLRP3, and ASC are not responsible for the gender-biased outcomes observed in ischemia/reperfusion injury. The lower caspase-1 mRNA expression in RTEs from females warrants further exploration of additional upstream signals that might differentially regulate caspase-1 in male vs. female RTEs.
Collapse
Affiliation(s)
- Sean E DeWolf
- Division of Nephrology/Hypertension, Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | |
Collapse
|
4
|
Molecular transplantation pathology: the interface between molecules and histopathology. Curr Opin Organ Transplant 2013; 18:354-62. [PMID: 23619514 DOI: 10.1097/mot.0b013e3283614c90] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW In the last decade, high-throughput molecular screening methods have revolutionized the transplantation research. This article reviews the new knowledge that has emerged from transplant patient sample-derived 'omics data by examining the interface between molecular signals and allograft pathology. RECENT FINDINGS State-of-the-art molecular studies have shed light on the biology of organ transplant diseases and provided several potential molecular tests with diagnostic, prognostic, and theranostic applications for the implementation of personalized medicine in transplantation. By comprehensive molecular profiling of patient samples, we have learned numerous new insights into the effector mechanisms and parenchymal response during allograft diseases. It has become evident that molecular profiles are coordinated and move in patterns similar to histopathology lesions, and therefore lack qualitative specificity. However, molecular tests can empower precision diagnosis and prognostication through their objective and quantitative manner when they are integrated in a holistic approach with histopathology and clinical factors of patients. SUMMARY Despite clever science and large amounts of public money invested in transplant 'omics studies, multiparametric molecular testing has not yet been translated to patient care. There are serious challenges in the implementation of transplant molecular diagnostics that have increased frustration in transplant community. We appeal for a full collaboration between pathologists and researchers to accelerate transition from research to clinical practice in transplantation.
Collapse
|
5
|
Abstract
PURPOSE OF REVIEW Organ transplantation and other major surgeries are impacted by ischemia-reperfusion injury (IRI). Mesenchymal stromal cells (MSCs) recently became an attractive alternative therapeutic tool to combat IRI. The present review highlights the effects of MSCs in the preclinical animal models of IRI and clinical trials, and explains their potential modes of action based on the pathophysiological IRI cascade. RECENT FINDINGS The application of MSCs in animal models of IRI show anti-inflammatory and anti-apoptotic effects, particularly for damage to the kidneys, heart and lungs. The mechanism of MSC action remains unclear, but may involve paracrine factors which could include the transfer of microvesicles, RNA or mitochondria. Although few clinical trials have reached completion, adverse effects appear minimal. SUMMARY MSCs show promise in protecting against IRI-induced damage. They appear to help recovery mainly by affecting the levels of inflammation and apoptosis during the organ repair process. In addition, they may mediate immunomodulatory effects on the innate and adaptive immune processes triggered during reperfusion and reduce fibrosis. Success in preclinical animal models has led to the initiation of ongoing clinical trials.
Collapse
|
6
|
Abstract
Transplantation is the treatment of choice for end-stage kidney, heart, lung, and liver disease. Short-term outcomes in solid-organ transplantation are excellent, but long-term outcomes remain suboptimal. Advances in immune suppression and human leukocyte antigen matching techniques have reduced the acute rejection rate to <10%. Chronic allograft injury remains problematic and is in part immune-mediated. This injury is orchestrated by a complex adaptive and innate immune system that has evolved to protect the organism from infection, but, in the context of transplantation, could result in allograft rejection. Such chronic injury is partially mediated by anti-human leukocyte antigen antibodies. Severe rejections have largely been avoided by the development of tissue-typing techniques and crossmatch testing, which are discussed in detail. Further advances in the understanding of T- and B-cell immunology have led to the development of new immunomodulatory therapies directed at prolonging allograft survival, including those that decrease antibody production as well as those that remove antibodies from circulation. Further application of these immunomodulatory therapies has allowed expansion of the donor pool in some cases by permitting ABO-incompatible transplantation and transplantation in patients with preformed antibodies. Although vast improvements have been made in allograft survival, patients must remain on lifetime immunosuppression. Withdrawal of immunosuppression almost always ultimately leads to allograft rejection. The ultimate dream of transplant biologists is the induction of tolerance, where immune function remains intact but the allograft is not rejected in the face of withdrawn immunosuppression. This, however, has remained a significant challenge in human studies.
Collapse
|
7
|
Shen H, Song Y, Colangelo CM, Wu T, Bruce C, Scabia G, Galan A, Maffei M, Goldstein DR. Haptoglobin activates innate immunity to enhance acute transplant rejection in mice. J Clin Invest 2011; 122:383-7. [PMID: 22156194 DOI: 10.1172/jci58344] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 10/26/2011] [Indexed: 12/14/2022] Open
Abstract
Immune tolerance to transplanted organs is impaired when the innate immune system is activated in response to the tissue necrosis that occurs during harvesting and implantation procedures. A key molecule in this immune pathway is the intracellular TLR signal adaptor known as myeloid differentiation primary response gene 88 (MyD88). After transplantation, MyD88 induces DC maturation as well as the production of inflammatory mediators, such as IL-6 and TNF-α. However, upstream activators of MyD88 function in response to transplantation have not been identified. Here, we show that haptoglobin, an acute phase protein, is an initiator of this MyD88-dependent inflammatory process in a mouse model of skin transplantation. Necrotic lysates from transplanted skin elicited higher inflammatory responses in DCs than did nontransplanted lysates, suggesting DC-mediated responses are triggered by factors released during transplantation. Analysis of transplanted lysates identified haptoglobin as one of the proteins upregulated during transplantation. Expression of donor haptoglobin enhanced the onset of acute skin transplant rejection, whereas haptoglobin-deficient skin grafts showed delayed acute rejection and antidonor T cell priming in a MyD88-dependent graft rejection model. Thus, our results show that haptoglobin release following skin necrosis contributes to accelerated transplant rejection, with potential implications for the development of localized immunosuppressive therapies.
Collapse
Affiliation(s)
- Hua Shen
- Department of Internal Medicine, Yale University School of Medicine,New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Hara Y, Stolk M, Ringe J, Dehne T, Ladhoff J, Kotsch K, Reutzel-Selke A, Reinke P, Volk HD, Seifert M. In vivo effect of bone marrow-derived mesenchymal stem cells in a rat kidney transplantation model with prolonged cold ischemia. Transpl Int 2011; 24:1112-23. [PMID: 21880071 DOI: 10.1111/j.1432-2277.2011.01328.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Brain death and prolonged cold ischemia are major contributors to the poorer long-term outcome of transplants from deceased donor kidney transplants, with an even higher impact if expanded criteria donors ('marginal organs') are used. Targeting ischemia-reperfusion injury-related intragraft inflammation is an attractive concept to improve the outcome of those grafts. As mesenchymal stem cells (MSCs) express both immunomodulatory and tissue repair properties, we evaluated their therapeutic efficacy in a rat kidney transplant model of prolonged cold ischemia. The in vitro immunomodulatory capacity of bone marrow-derived rat MSCs was tested in co-cultures with rat lymph node cells. For in vivo studies, Dark Agouti rat kidneys were cold preserved and transplanted into Lewis rats. Syngeneic Lewis MSCs were administered intravenously. Transplants were harvested on day 3, and inflammation was examined by quantitative RT-PCR and histology. Similarly to MSCs from other species, rat MSCs in vitro also showed a dose-dependent immunomodulatory capacity. Most importantly, in vivo administration of MSCs reduced the intragraft gene expression of different pro-inflammatory cytokines, chemokines, and intercellular adhesion molecule-1. In addition, fewer antigen-presenting cells were recruited into the renal allograft. In conclusion, rat MSCs ameliorate inflammation induced by prolonged cold ischemia in kidney transplantation.
Collapse
Affiliation(s)
- Yoshiaki Hara
- Institute of Medical Immunology, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Towards cytoprotection in the peritransplant period. Semin Immunol 2011; 23:209-13. [DOI: 10.1016/j.smim.2011.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Accepted: 07/10/2011] [Indexed: 01/26/2023]
|