1
|
Abdel-Hakeem SS, Fadladdin YAJ, Khormi MA, Abd-El-Hafeez HH. Modulation of the intestinal mucosal and cell-mediated response against natural helminth infection in the African catfish Clarias gariepinus. BMC Vet Res 2024; 20:335. [PMID: 39068442 PMCID: PMC11282724 DOI: 10.1186/s12917-024-04153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Fish gut is a versatile organ serving as the primary pathway for invasion by pathogens, particularly parasites, playing a crucial role in modulating the intestinal adaptive immune response. This study aimed to investigate the cellular-mediated reaction, mucosal acidity, and the expression of proliferating cell nuclear antigen (PCNA), vascular endothelial growth factor (VEGF), and CD68 in the intestines of catfish, Clarias gariepinus, naturally infected with helminths. Forty catfish were collected from the Nile River and examined for intestinal parasites. The intestinal tissues of the control and infected fish were fixed for histochemical and immunohistochemical studies. Two groups of helminths were found: cestodes Tetracampos ciliotheca and Polyonchobothrium clarias, and nematodes Paracamallanus cyathopharynx, with a prevalence rate of 63.63%, 18.0%, and 18.0%, respectively. Our results showed that the infected fish had a statistically significant rise in the activity of immune cells, including mast cells, eosinophil granular cells, and dendritic cells. This correlated with upregulation in the expressions of PCNA, VEGF, and CD68. Histochemical analyses demonstrated a marked increase in acidic mucus production, Sudan black B, and bromophenol mercury blue. This study enriches our understanding of the evolution of vertebrate immunity in combating intestinal parasitic infections and the host's adaptive responses.
Collapse
Affiliation(s)
- Sara Salah Abdel-Hakeem
- Parasitology Laboratory, Zoology and Entomology Department, Faculty of Science, Assiut University, Assiut, 71526, Egypt.
| | | | - Mohsen A Khormi
- Department of Biology, College of Science, Jazan University, Saudi Arabia, P.O. Box. 114, Jazan, 45142, Kingdom of Saudi Arabia
| | - Hanan H Abd-El-Hafeez
- Department of Cell and Tissues, Faculty of Veterinary Medicine, Assiut University, Assiut, 71526, Egypt.
| |
Collapse
|
2
|
Abou-El-Naga IF, Mogahed NMFH. Potential roles of Toxocara canis larval excretory secretory molecules in immunomodulation and immune evasion. Acta Trop 2023; 238:106784. [PMID: 36502886 DOI: 10.1016/j.actatropica.2022.106784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/15/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022]
Abstract
Toxocara canis larvae invade various tissues of different vertebrate species without developing into adults in paratenic host. The long-term survival of the larvae despite exposure to the well-armed immune response is a notable achievement. The larvae modulate the immune response to help the survival of both the host and the larvae. They skew the immune response to type 2/regulatory phenotype. The outstanding ability of the larvae to modulate the host immune response and to evade the immune arms is attributed to the secretion of Toxocara excretory-secretory products (TESPs). TESPs are complex mixture of differing molecules. The present review deals with the molecular composition of the TESPs, their interaction with the host molecules, their effect on the innate immune response, the receptor recognition, the downstream signals the adaptive immunity and the repair of tissues. This review also addresses the role of TESPs molecules in the immune evasion strategy and the potential effect of the induced immunomodulation in some diseases. Identification of parasite components that influence the nematode-host interactions could enhance understanding the molecular basis of nematode pathogenicity. Furthermore, the identification of helminths molecules with immunomodulatory potential could be used in immunotherapies for some diseases.
Collapse
Affiliation(s)
- Iman F Abou-El-Naga
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt.
| | - Nermine M F H Mogahed
- Medical Parasitology Department, Faculty of Medicine, Alexandria University, 12 Abdel Hamid El Deeb Street, Tharwat, Alexandria, Egypt
| |
Collapse
|
3
|
Xiao Q, Xia Y. Insights into dendritic cell maturation during infection with application of advanced imaging techniques. Front Cell Infect Microbiol 2023; 13:1140765. [PMID: 36936763 PMCID: PMC10018208 DOI: 10.3389/fcimb.2023.1140765] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Dendritic cells (DCs) are crucial for the initiation and regulation of adaptive immune responses. When encountering immune stimulus such as bacterial and viral infection, parasite invasion and dead cell debris, DCs capture antigens, mature, acquire immunostimulatory activity and transmit the immune information to naïve T cells. Then activated cytotoxic CD8+ T cells directly kill the infected cells, while CD4+ T helper cells release cytokines to aid the activity of other immune cells, and help B cells produce antibodies. Thus, detailed insights into the DC maturation process are necessary for us to understand the working principle of immune system, and develop new medical treatments for infection, cancer and autoimmune disease. This review summarizes the DC maturation process, including environment sensing and antigen sampling by resting DCs, antigen processing and presentation on the cell surface, DC migration, DC-T cell interaction and T cell activation. Application of advanced imaging modalities allows visualization of subcellular and molecular processes in a super-high resolution. The spatiotemporal tracking of DCs position and migration reveals dynamics of DC behavior during infection, shedding novel lights on DC biology.
Collapse
Affiliation(s)
- Qi Xiao
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
- *Correspondence: Qi Xiao,
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, China
- Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, China
- Key Laboratory of Gene Function and Regulation Technologies Under Chongqing Municipal Education Commission, Chongqing, China
| |
Collapse
|
4
|
Hrabar J, Petrić M, Cavallero S, Salvemini M, D’Amelio S, Mladineo I. Rat and fish peripheral blood leukocytes respond distinctively to Anisakis pegreffii (Nematoda, Anisakidae) crude extract. Front Cell Infect Microbiol 2022; 12:1042679. [PMID: 36590595 PMCID: PMC9797851 DOI: 10.3389/fcimb.2022.1042679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/18/2022] [Indexed: 12/23/2022] Open
Abstract
Infective third-stage larvae (L3) of the marine nematode Anisakis pegreffii cause inflammation and clinical symptoms in humans, their accidental host, that subside and self-resolve in a couple of weeks after L3 die. To characterise the differences in an early immune response of a marine vs. terrestrial host, we stimulated peripheral blood leukocytes (PBLs) of fish (paratenic host) and rat (accidental, human-model host) with A. pegreffii crude extract and analysed PBL transcriptomes 1 and 12 h post-stimulation. Fish and rat PBLs differentially expressed 712 and 493 transcripts, respectively, between 1 and 12 h post-stimulation (false discovery rate, FDR <0.001, logFC >2). While there was a difference in the highest upregulated transcripts between two time-points, the same Gene Ontologies, biological processes (intracellular signal transduction, DNA-dependent transcription, and DNA-regulated regulation of transcription), and molecular functions (ATP and metal ion binding) were enriched in the two hosts, showing an incrementing dynamic between 1 and 12 h. This suggests that the two distinct hosts employ qualitatively different transcript cascades only to achieve the same effect, at least during an early innate immunity response. Activation of later immunity elements and/or a combination of other host's intrinsic conditions may contribute to the death of L3 in the terrestrial host.
Collapse
Affiliation(s)
- Jerko Hrabar
- Laboratory of Aquaculture, Institute of Oceanography and Fisheries, Split, Croatia
| | - Mirela Petrić
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Serena Cavallero
- Department of Public Health and Infectious Diseases, University of Rome, Sapienza, Rome, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Stefano D’Amelio
- Department of Public Health and Infectious Diseases, University of Rome, Sapienza, Rome, Italy
| | - Ivona Mladineo
- Laboratory of Functional Helminthology, Institute of Parasitology, Biology Centre of Czech Academy of Sciences, Ceske Budejovice, Czechia,*Correspondence: Ivona Mladineo,
| |
Collapse
|
5
|
Different dendritic cells-based vaccine constructs influence HIV-1 antigen-specific immunological responses and cytokine generation in virion-exposed splenocytes. Int Immunopharmacol 2022; 113:109406. [DOI: 10.1016/j.intimp.2022.109406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/18/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
|
6
|
Peng J, Federman HG, Hernandez C, Siracusa MC. Communication is key: Innate immune cells regulate host protection to helminths. Front Immunol 2022; 13:995432. [PMID: 36225918 PMCID: PMC9548658 DOI: 10.3389/fimmu.2022.995432] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022] Open
Abstract
Parasitic helminth infections remain a significant global health issue and are responsible for devastating morbidity and economic hardships. During infection, helminths migrate through different host organs, which results in substantial tissue damage and the release of diverse effector molecules by both hematopoietic and non-hematopoietic cells. Thus, host protective responses to helminths must initiate mechanisms that help to promote worm clearance while simultaneously mitigating tissue injury. The specialized immunity that promotes these responses is termed type 2 inflammation and is initiated by the recruitment and activation of hematopoietic stem/progenitor cells, mast cells, basophils, eosinophils, dendritic cells, neutrophils, macrophages, myeloid-derived suppressor cells, and group 2 innate lymphoid cells. Recent work has also revealed the importance of neuron-derived signals in regulating type 2 inflammation and antihelminth immunity. These studies suggest that multiple body systems coordinate to promote optimal outcomes post-infection. In this review, we will describe the innate immune events that direct the scope and intensity of antihelminth immunity. Further, we will highlight the recent progress made in our understanding of the neuro-immune interactions that regulate these pathways and discuss the conceptual advances they promote.
Collapse
Affiliation(s)
- Jianya Peng
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Hannah G. Federman
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Christina M. Hernandez
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
| | - Mark C. Siracusa
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- Department of Medicine, New Jersey Medical School, Rutgers-The State University of New Jersey, Newark, NJ, United States
- *Correspondence: Mark C. Siracusa,
| |
Collapse
|
7
|
Bąska P, Norbury LJ. The Role of Nuclear Factor Kappa B (NF-κB) in the Immune Response against Parasites. Pathogens 2022; 11:pathogens11030310. [PMID: 35335634 PMCID: PMC8950322 DOI: 10.3390/pathogens11030310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/17/2022] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
The immune system consists of various cells, organs, and processes that interact in a sophisticated manner to defend against pathogens. Upon initial exposure to an invader, nonspecific mechanisms are raised through the activation of macrophages, monocytes, basophils, mast cells, eosinophils, innate lymphoid cells, or natural killer cells. During the course of an infection, more specific responses develop (adaptive immune responses) whose hallmarks include the expansion of B and T cells that specifically recognize foreign antigens. Cell to cell communication takes place through physical interactions as well as through the release of mediators (cytokines, chemokines) that modify cell activity and control and regulate the immune response. One regulator of cell states is the transcription factor Nuclear Factor kappa B (NF-κB) which mediates responses to various stimuli and is involved in a variety of processes (cell cycle, development, apoptosis, carcinogenesis, innate and adaptive immune responses). It consists of two protein classes with NF-κB1 (p105/50) and NF-κB2 (p100/52) belonging to class I, and RelA (p65), RelB and c-Rel belonging to class II. The active transcription factor consists of a dimer, usually comprised of both class I and class II proteins conjugated to Inhibitor of κB (IκB). Through various stimuli, IκB is phosphorylated and detached, allowing dimer migration to the nucleus and binding of DNA. NF-κB is crucial in regulating the immune response and maintaining a balance between suppression, effective response, and immunopathologies. Parasites are a diverse group of organisms comprised of three major groups: protozoa, helminths, and ectoparasites. Each group induces distinct effector immune mechanisms and is susceptible to different types of immune responses (Th1, Th2, Th17). This review describes the role of NF-κB and its activity during parasite infections and its contribution to inducing protective responses or immunopathologies.
Collapse
Affiliation(s)
- Piotr Bąska
- Division of Pharmacology and Toxicology, Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, 02-786 Warsaw, Poland
- Correspondence:
| | - Luke J. Norbury
- Department of Biosciences and Food Technology, School of Science, STEM College, RMIT University, Bundoora, VIC 3083, Australia;
| |
Collapse
|
8
|
Ruiz-Jiménez C, Celias D, Valdés B, Ramos-Pérez WD, Cervi L, Espino AM. Fasciola hepatica fatty acid binding protein (Fh12) induces apoptosis and tolerogenic properties in murine bone marrow derived dendritic cells. Exp Parasitol 2021; 231:108174. [PMID: 34752732 DOI: 10.1016/j.exppara.2021.108174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/11/2021] [Accepted: 10/31/2021] [Indexed: 11/29/2022]
Abstract
In a previous study we demonstrated that Fasciola hepatica fatty acid binding protein (Fh12) significantly suppress macrophage function by inhibiting IL-6, IL-1β, tumor necrosis factor (TNF)-α and IL-12 production in TLR4-stimulated murine macrophages, an effect mediated through the signaling of CD14 co-receptor without affecting the viability of these cells. Given that dendritic cells (DCs) are immune cells that play a central role in the initiation of primary immune responses and that are the only antigen-presenting cells capable of stimulating naïve T-cells, in the present study we investigated the effect of Fh12 on DCs. We found that Fh12 exerts a strong suppressive effect on activation and function of DCs. However, in contrast to the effect observed on macrophages, Fh12 induces early and late apoptosis of DCs being this phenomenon dose-dependent and CD14-coreceptor independent. At low concentration Fh12 modulates the LPS-induced DCs maturation status by suppressing the MHC-II, and co-stimulatory molecules CD40 and CD80 surface expression together with the pro-inflammatory cytokines IL-12p70 and IL-6 production whereas increase the IL-10 levels. Besides, Fh12 decreased the ability of LPS-activated DCs to induce IFN-γ production against allogeneic splenocytes, while increasing IL-4 production. We have described for the first time the ability of Fh12 to modify selectively the viability of DCs by apoptosis induction. The selective diminution in DCs survival could be a F. hepatica strategy in order to prevent a host immune response during the earliest phases of infection.
Collapse
Affiliation(s)
- Caleb Ruiz-Jiménez
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA
| | - Daiana Celias
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, Argentina
| | - Bianca Valdés
- Department of Biology, University of Puerto Rico, Rio Piedras Campus, San Juan, PR, USA
| | - Willy D Ramos-Pérez
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA
| | - Laura Cervi
- Department of Clinical Biochemistry, Faculty of Chemical Sciences, National University of Cordoba, Argentina
| | - Ana M Espino
- Laboratory of Immunology and Molecular Parasitology, Department of Microbiology, University of Puerto Rico, School of Medicine, San Juan, PR, USA.
| |
Collapse
|
9
|
DC-SIGN signalling induced by Trichinella spiralis products contributes to the tolerogenic signatures of human dendritic cells. Sci Rep 2020; 10:20283. [PMID: 33219293 PMCID: PMC7679451 DOI: 10.1038/s41598-020-77497-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/11/2020] [Indexed: 12/28/2022] Open
Abstract
Tolerogenic dendritic cells (tolDCs) are central players in the maintenance of immune tolerance and thereby have been identified as the most favourable candidates for cell therapy of autoimmune diseases. We have recently shown that excretory-secretory products (ES L1) released by Trichinella spiralis larvae induce stable human tolDCs in vitro via Toll-like receptor 2 (TLR2) and TLR4. However, engagement of these receptors did not fully explain the tolerogenic profile of DCs. Here, we observed for the first time that dendritic cell-specific ICAM-3 grabbing non-integrin (DC-SIGN) interacts with highly glycosylated ES L1 and contributes to the generation of ES L1-induced tolDCs. Blocking DC-SIGN interfered with the ES L1-induced higher expression of CD40 and CCR7 and the production of IL-10 and TGF-β by DCs. The cooperation of TLR2, TLR4 and DC-SIGN receptors is of importance for the capacity of DCs to prime T cell response toward Th2 and to induce expansion of CD4+CD25+Foxp3+ T cells, as well as for the production of IL-10 and TGF-β by these cells. Overall, these results indicate that induction of tolDCs by ES L1 involves engagement of multiple pattern recognition receptors namely, TLR2, TLR4 and DC-SIGN.
Collapse
|
10
|
Mei X, Shi W, Zhao W, Luo H, Zhang Y, Wang Y, Sheng Z, Wang D, Zhu XQ, Huang W. Fasciola gigantica excretory-secretory products (FgESPs) modulate the differentiation and immune functions of buffalo dendritic cells through a mechanism involving DNMT1 and TET1. Parasit Vectors 2020; 13:355. [PMID: 32680546 PMCID: PMC7368760 DOI: 10.1186/s13071-020-04220-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022] Open
Abstract
Background Fasciola gigantica infection threatens the health of both humans and animals in the world. The excretory/secretory products (ESPs) of this fluke has been reported to impair the activation and maturation of immune cells. We have previously shown the influence of F. gigantica ESPs (FgESPs) on the maturation of buffalo dendritic cells (DCs). However, the underlying mechanisms remain unclear. The objective of this study was to investigate the potency of FgESPs in shifting the differentiation and immune functions of buffalo DCs. Methods Buffalo DCs were incubated with FgESPs directly or further co-cultured with lymphocytes in vitro. qRT-PCR was employed to determine the gene expression profile of DCs or the mixed cells, and an ELISA was used to measure cytokine levels in the supernatants. Hoechst and Giemsa staining assays, transmission electron microscopy, caspase-3/7 activity test and histone methylation test were performed to determine DC phenotyping, apoptosis and methylation. To investigate the mechanism involved with DNA methylation, a Co-IP assay and immunofluorescent staining assay were performed to observe if there was any direct interaction between FgESPs and DNMT1/TET1 in buffalo DCs, while RNAi technology was employed to knockdown DNMT1 and TET1 in order to evaluate any different influence of FgESPs on DCs when these genes were absent. Results qRT-PCR and ELISA data together demonstrated the upregulation of DC2 and Th2/Treg markers in DCs alone and DCs with a mixed lymphocyte reaction (MLR), suggesting a bias of DC2 that potentially directed Th2 differentiation in vitro. DC apoptosis was also found and evidenced morphologically and biochemically, which might be a source of tolerogenic DCs that led to Treg differentiation. In addition, FgESPs induced methylation level changes of histones H3K4 and H3K9, which correlate with DNA methylation. Co-IP and immunofluorescent subcellular localization assays showed no direct interaction between the FgESPs and DNMT1/TET1 in buffalo DCs. The productions of IL-6 and IL-12 were found separately altered by the knockdown of DNMT1 and TET1 in DCs after FgESPs treatment. Conclusions FgESPs may induce the DC2 phenotype or the apoptosis of buffalo DCs to induce the downstream Th2/Treg response of T cells, possibly through a DNMT1- or TET1-dependent manner(s).![]()
Collapse
Affiliation(s)
- Xuefang Mei
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wei Shi
- School of Preclinical Medicine, Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Wenping Zhao
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Honglin Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Institute of Fishery Sciences, Nanning, 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yaoyao Zhang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yurui Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Zhaoan Sheng
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dongying Wang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, Gansu, People's Republic of China. .,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University College of Veterinary Medicine, Yangzhou, 225009, Jiangsu, People's Republic of China.
| | - Weiyi Huang
- School of Animal Science and Technology, Guangxi University, Nanning, 530005, Guangxi Zhuang Autonomous Region, People's Republic of China.
| |
Collapse
|
11
|
Matucci A, Maggi E, Vultaggio A. Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. Respir Med 2019; 160:105819. [PMID: 31734469 DOI: 10.1016/j.rmed.2019.105819] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Bronchial asthma is a chronic inflammatory disease characterized, in a percentage of patients, as an eosinophilic inflammation of the airways. Eosinophils are recognized as a proinflammatory granulocyte playing a major role in the T2-high phenotype, which includes severe eosinophilic asthma. Eosinophilic asthma represents the majority of the phenotypic variants clinically characterized by severity and frequent exacerbations. For patients with severe uncontrolled asthma, monoclonal antibodies are used as add-on treatments. Among them, in addition to anti-immunoglobulin E therapy, biologic agents directed toward the interleukin (IL)-5/IL-5Rα axis and, thus, interfering with the pathologic functions of eosinophils, are now available. Unlike the other anti‒IL-5 monoclonal antibodies which exert an indirect effect on eosinophils, benralizumab, an afucosylated IgG1 kappa antibody directed against the α subunit of IL-5R, directly depletes eosinophils and their associated bone marrow progenitor cells through induction of antibody-dependent cell-mediated cytotoxicity, through recruitment of natural killer cells. This article reviews the role of eosinophils in the pathogenesis of bronchial asthma and discusses the potential advantageous biologic effects of benralizumab in comparison with other monoclonal antibodies targeting the IL-5 ligand.
Collapse
Affiliation(s)
- Andrea Matucci
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy.
| | - Enrico Maggi
- IRCCS Pediatric Hospital Bambino Gesù, Rome, Italy
| | - Alessandra Vultaggio
- Immunoallergology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|
12
|
Cao G, Cui R, Liu C, Zhang G, Zhang Z. MTBHsp70-exFPR1-pulsed Dendritic Cells Enhance the Immune Response against Cervical Cancer. J Cancer 2019; 10:6364-6373. [PMID: 31772669 PMCID: PMC6856742 DOI: 10.7150/jca.29779] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
Cervical cancer is the most common malignancy of the female reproductive system. Dendritic cell (DC)-based immunological therapy is a novel treatment for this cancer. DCs are specialized antigen-presenting cells (APCs) in the human immune system, and they can activate the T cells used in tumor immunological therapy. In this study, we developed a novel immunotherapeutic peptide by linking the Mycobacterium tuberculosis (MTB) heat shock protein 70 (Hsp70) functional peptide to the extracellular domain of FPR1, a protein overexpressed in cervical cancer, to obtain an MTBHsp70-exFPR1 fusion protein. Our experiments confirmed that the MTBHsp70-exFPR1 protein could promote DC maturation and induce the secretion of IL-12p70, IL-1β, and TNF-α. The antitumor effect of human cytotoxic T lymphocytes (CTLs) activated by autologous DCs was assessed in NOG mice. These results indicate that DCs pulsed with MTBHsp70-exFPR1 can enhance antitumor immunity against cervical cancer, providing a novel immune therapeutic strategy.
Collapse
Affiliation(s)
- Guangming Cao
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Ran Cui
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Chongdong Liu
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Guyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University
| | - Zhenyu Zhang
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University
| |
Collapse
|
13
|
Napoletano C, Mattiucci S, Colantoni A, Battisti F, Zizzari IG, Rahimi H, Nuti M, Rughetti A. Anisakis pegreffii impacts differentiation and function of human dendritic cells. Parasite Immunol 2019; 40:e12527. [PMID: 29569735 DOI: 10.1111/pim.12527] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 03/13/2018] [Indexed: 02/07/2023]
Abstract
Human dendritic cells (DCs) show remarkable phenotypic changes when matured in the presence of helminth-derived products. These modifications frequently elicited a polarization towards Th2 cells and regulatory T cells thus contributing to immunological tolerance against these pathogens. In this study, the interaction between DCs and larvae of the zoonotic anisakid nematode Anisakis pegreffii was investigated. A. pegreffii larvae were collected from fish hosts, and monocyte-derived DCs were cocultured in the presence of the live larvae (L) or its crude extracts (CE). In both experimental conditions, A. pegreffii impacted DC viability, hampered DC maturation by reducing the expression of molecules involved in antigen presentation and migration (ie HLA-DR, CD86, CD83 and CCR7), increased the phagosomal radical oxygen species (ROS) levels and modulated the phosphorylation of ERK1,2 pathway. These biological changes were accompanied by the impairment of DCs to activate a T-cell-mediated IFNγ. Interestingly, live larvae appeared to differently modulate DC secretion of cytokines and chemokines as compared to CE. These results demonstrate, for the first time, the immunomodulatory role of A. pegreffii on DCs biology and functions. In addition, they suggest a dynamic contribution of DCs to the induction and maintenance of the inflammatory response against A. pegreffii.
Collapse
Affiliation(s)
- C Napoletano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - S Mattiucci
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, University Hospital "Policlinico Umberto I", "Sapienza" University of Rome, Rome, Italy
| | - A Colantoni
- Department of Public Health and Infectious Diseases, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, University Hospital "Policlinico Umberto I", "Sapienza" University of Rome, Rome, Italy
| | - F Battisti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - I G Zizzari
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - H Rahimi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - M Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - A Rughetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
14
|
Shao S, Sun X, Chen Y, Zhan B, Zhu X. Complement Evasion: An Effective Strategy That Parasites Utilize to Survive in the Host. Front Microbiol 2019; 10:532. [PMID: 30949145 PMCID: PMC6435963 DOI: 10.3389/fmicb.2019.00532] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 03/01/2019] [Indexed: 12/15/2022] Open
Abstract
Parasitic infections induce host immune responses that eliminate the invading parasites. However, parasites have evolved to develop many strategies to evade host immune attacks and survive in a hostile environment. The complement system acts as the first line of immune defense to eliminate the invading parasites by forming the membrane attack complex (MAC) and promoting an inflammatory reaction on the surface of invading parasites. To date, the complement activation pathway has been precisely delineated; however, the manner in which parasites escape complement attack, as a survival strategy in the host, is not well understood. Increasing evidence has shown that parasites develop sophisticated strategies to escape complement-mediated killing, including (i) recruitment of host complement regulatory proteins on the surface of the parasites to inhibit complement activation; (ii) expression of orthologs of host RCA to inhibit complement activation; and (iii) expression of parasite-encoded proteins, specifically targeting different complement components, to inhibit complement function and formation of the MAC. In this review, we compiled information regarding parasitic abilities to escape host complement attack as a survival strategy in the hostile environment of the host and the mechanisms underlying complement evasion. Effective escape of host complement attack is a crucial step for the survival of parasites within the host. Therefore, those proteins expressed by parasites and involved in the regulation of the complement system have become important targets for the development of drugs and vaccines against parasitic infections.
Collapse
Affiliation(s)
- Shuai Shao
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ximeng Sun
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yi Chen
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Bin Zhan
- Department of Pediatrics, National School of Tropical Medicine, Baylor College of Medicine, Houston, TX, United States
| | - Xinping Zhu
- Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
15
|
Matucci A, Maggi E, Vultaggio A. WITHDRAWN: Eosinophils, the IL-5/IL-5Rα axis, and the biologic effects of benralizumab in severe asthma. RESPIRATORY MEDICINE: X 2019. [DOI: 10.1016/j.yrmex.2019.100007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
16
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
17
|
Modulation of TLR2 and TLR4 in Macrophages Following Trichinella Spiralis Infection. Helminthologia 2018; 55:195-203. [PMID: 31662647 PMCID: PMC6662015 DOI: 10.2478/helm-2018-0015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 02/20/2018] [Indexed: 11/20/2022] Open
Abstract
Parasitic helminthes can suppress and/or regulate the host immune response to allow long-term survival and chronic infection where toll-like receptors (TLRs) expressed on macrophages play essential roles in response to parasitic infection. Semi-quantitative PCR and flow cytometry studies about the modulation of TLRs and cytokine profiles in macrophages following T. spiralis infection were performed. TLRs, MyD88 and NF-κB were up-regulated by T. spiralis infection and essential to the parasite life cycles. Cytokines profiles (IL-6, IL-10, IL-12, TNF-α) were modulated during T. spiralis infection. Results suggest that T. spiralis infection may regulate the expression of TLR4 on macrophages and TLR4/MyD88/NF-κB signaling pathways. This study provides further insights into the mechanisms of TLR-mediated post-inflammatory response during T. spiralis infection.
Collapse
|
18
|
Motran CC, Silvane L, Chiapello LS, Theumer MG, Ambrosio LF, Volpini X, Celias DP, Cervi L. Helminth Infections: Recognition and Modulation of the Immune Response by Innate Immune Cells. Front Immunol 2018; 9:664. [PMID: 29670630 PMCID: PMC5893867 DOI: 10.3389/fimmu.2018.00664] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 03/19/2018] [Indexed: 01/06/2023] Open
Abstract
The survival of helminths in the host over long periods of time is the result of a process of adaptation or dynamic co-evolution between the host and the parasite. However, infection with helminth parasites causes damage to the host tissues producing the release of danger signals that induce the recruitment of various cells, including innate immune cells such as macrophages (Mo), dendritic cells (DCs), eosinophils, basophils, and mast cells. In this scenario, these cells are able to secrete soluble factors, which orchestrate immune effector mechanisms that depend on the different niches these parasites inhabit. Here, we focus on recent advances in the knowledge of excretory-secretory products (ESP), resulting from helminth recognition by DCs and Mo. Phagocytes and other cells types such as innate lymphocyte T cells 2 (ILC2), when activated by ESP, participate in an intricate cytokine network to generate innate and adaptive Th2 responses. In this review, we also discuss the mechanisms of innate immune cell-induced parasite killing and the tissue repair necessary to assure helminth survival over long periods of time.
Collapse
Affiliation(s)
- Claudia Cristina Motran
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Leonardo Silvane
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Martin Gustavo Theumer
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Fernanda Ambrosio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Ximena Volpini
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Daiana Pamela Celias
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.,Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Córdoba, Argentina
| |
Collapse
|
19
|
Zheng Y, Zheng X, Li S, Zhang H, Liu M, Yang Q, Zhang M, Sun Y, Wu J, Yu B. Identification of key genes and pathways in regulating immune‑induced diseases of dendritic cells by bioinformatic analysis. Mol Med Rep 2018; 17:7585-7594. [PMID: 29620200 PMCID: PMC5983944 DOI: 10.3892/mmr.2018.8834] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 03/22/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) serve crucial roles in the activation of the immune response, and imbalance in the activation or inhibition of DCs has been associated with an increased susceptibility to develop immune-induced diseases. However, the molecular mechanisms of regulating immune-induced diseases of DCs are not well understood. The aim of the present study was to identify the gene signatures and uncover the potential regulatory mechanisms in DCs. A total of 4 gene expression profiles (GSE52894, GSE72893, GSE75938 and GSE77969) were integrated and analyzed in depth. In total, 241 upregulated genes and 365 downregulated genes were detected. Gene ontology and pathway enrichment analysis showed that the differentially expressed genes (DEGs) were significantly enriched in the inflammatory response, the tumor necrosis factor (TNF) signaling pathway, the nuclear factor (NF)-κB signaling pathway and antigen processing. The top 10 hub genes were identified from the protein-protein analysis. The most significant 2 modules were filtered from the protein-protein network. The genes in 2 modules were involved in type I interferon signaling, the NF-κB signaling pathway and the TNF signaling pathway. Furthermore, the microRNA-mRNA network analysis was performed. The results of the present study revealed that the identified DEGs and pathways may improve our understanding of the mechanisms of the maturation of DCs, and the candidate hub genes that may be therapeutic targets for immune-induced diseases.
Collapse
Affiliation(s)
- Yang Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xianghui Zheng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Shuang Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Hanlu Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Mingyang Liu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Qingyuan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Maomao Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Yong Sun
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Jian Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
20
|
Dendritic cells in autoimmunity, infections, and cancer. Semin Immunopathol 2017; 39:97-98. [PMID: 28093619 DOI: 10.1007/s00281-016-0618-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
|