1
|
Ricklin D. Complement-targeted therapeutics: Are we there yet, or just getting started? Eur J Immunol 2024; 54:e2350816. [PMID: 39263829 PMCID: PMC11628912 DOI: 10.1002/eji.202350816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
Therapeutic interventions in the complement system, a key immune-inflammatory mediator and contributor to a broad range of clinical conditions, have long been considered important yet challenging or even unfeasible to achieve. Almost 20 years ago, a spark was lit demonstrating the clinical and commercial viability of complement-targeted therapies. Since then, the field has experienced an impressive expansion of targeted indications and available treatment modalities. Currently, a dozen distinct complement-specific therapeutics covering several intervention points are available in the clinic, benefiting patients suffering from eight disorders, not counting numerous clinical trials and off-label uses. Observing this rapid rise of complement-targeted therapy from obscurity to mainstream with amazement, one might ask whether the peak of this development has now been reached or whether the field will continue marching on to new heights. This review looks at the milestones of complement drug discovery and development achieved so far, surveys the currently approved drug entities and indications, and ventures a glimpse into the future advancements yet to come.
Collapse
Affiliation(s)
- Daniel Ricklin
- Molecular Pharmacy Group, Department of Pharmaceutical SciencesUniversity of BaselBaselSwitzerland
| |
Collapse
|
2
|
Rashid S, Raza M, Sharif M, Azam F, Kadry S, Kim J. White blood cell image analysis for infection detection based on virtual hexagonal trellis (VHT) by using deep learning. Sci Rep 2023; 13:17827. [PMID: 37857667 PMCID: PMC10587153 DOI: 10.1038/s41598-023-44352-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
White blood cells (WBCs) are an indispensable constituent of the immune system. Efficient and accurate categorization of WBC is a critical task for disease diagnosis by medical experts. This categorization helps in the correct identification of medical problems. In this research work, WBC classes are categorized with the help of a transform learning model in combination with our proposed virtual hexagonal trellis (VHT) structure feature extraction method. The VHT feature extractor is a kernel-based filter model designed over a square lattice. In the first step, Graft Net CNN model is used to extract features of augmented data set images. Later, the VHT base feature extractor extracts useful features. The CNN-extracted features are passed to ant colony optimization (ACO) module for optimal features acquisition. Extracted features from the VHT base filter and ACO are serially merged to create a single feature vector. The merged features are passed to the support vector machine (SVM) variants for optimal classification. Our strategy yields 99.9% accuracy, which outperforms other existing methods.
Collapse
Affiliation(s)
- Shahid Rashid
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, 47040, Pakistan
| | - Mudassar Raza
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, 47040, Pakistan.
| | - Muhammad Sharif
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, 47040, Pakistan
| | - Faisal Azam
- Department of Computer Science, COMSATS University Islamabad, Wah Campus, Islamabad, 47040, Pakistan
| | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, Kristiansand, Norway
- Department of Electrical and Computer Engineering, Lebanese American University, Byblos, Lebanon
- Artificial Intelligence Research Center (AIRC), College of Engineering and Information Technology, Ajman University, Ajman, United Arab Emirates
| | - Jungeun Kim
- Department of Software, Kongju National University, Cheonan, 31080, Korea.
| |
Collapse
|
3
|
Li Y, Tao C, An N, Liu H, Liu Z, Zhang H, Sun Y, Xing Y, Gao Y. Revisiting the role of the complement system in intracerebral hemorrhage and therapeutic prospects. Int Immunopharmacol 2023; 123:110744. [PMID: 37552908 DOI: 10.1016/j.intimp.2023.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/21/2023] [Accepted: 07/29/2023] [Indexed: 08/10/2023]
Abstract
Intracerebral hemorrhage (ICH) is a stroke subtype characterized by non-traumatic rupture of blood vessels in the brain, resulting in blood pooling in the brain parenchyma. Despite its lower incidence than ischemic stroke, ICH remains a significant contributor to stroke-related mortality, and most survivors experience poor outcomes that significantly impact their quality of life. ICH has been accompanied by various complex pathological damage, including mechanical damage of brain tissue, hematoma mass effect, and then leads to inflammatory response, thrombin activation, erythrocyte lysis, excitatory amino acid toxicity, complement activation, and other pathological changes. Accumulating evidence has demonstrated that activation of complement cascade occurs in the early stage of brain injury, and the excessive complement activation after ICH will affect the occurrence of secondary brain injury (SBI) through multiple complex pathological processes, aggravating brain edema, and pathological brain injury. Therefore, the review summarized the pathological mechanisms of brain injury after ICH, specifically the complement role in ICH, and its related pathological mechanisms, to comprehensively understand the specific mechanism of different complements at different stages after ICH. Furthermore, we systematically reviewed the current state of complement-targeted therapies for ICH, providing a reference and basis for future clinical transformation of complement-targeted therapy for ICH.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenxi Tao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Na An
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Haoqi Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zhenhong Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hongrui Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yikun Sun
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanwei Xing
- Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Yonghong Gao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China; Institute for Brain Disorders, Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
4
|
de Boer ECW, Jalink M, Delvasto-Nuñez L, Meulenbroek EM, Baas I, Janssen SR, Folman CC, Gelderman KA, Wouters D, Engel MD, de Haas M, Kersten MJ, Jongerius I, Zeerleder S, Vos JMI. C1-inhibitor treatment in patients with severe complement-mediated autoimmune hemolytic anemia. Blood Adv 2023; 7:3128-3139. [PMID: 36920779 PMCID: PMC10362545 DOI: 10.1182/bloodadvances.2022009402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/16/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Complement-mediated (CM) autoimmune hemolytic anemia (AIHA) is characterized by the destruction of red blood cells (RBCs) by autoantibodies that activate the classical complement pathway. These antibodies also reduce transfusion efficacy via the lysis of donor RBCs. Because C1-inhibitor (C1-INH) is an endogenous regulator of the classical complement pathway, we hypothesized that peritransfusional C1-INH in patients with severe CM-AIHA reduces complement activation and hemolysis, and thus enhances RBC transfusion efficacy. We conducted a prospective, single-center, phase 2, open-label trial (EudraCT2012-003710-13). Patients with confirmed CM-AIHA and indication for the transfusion of 2 RBC units were eligible for inclusion. Four IV C1-INH doses (6000, 3000, 2000, and 1000 U) were administered with 12-hour intervals around RBC transfusion. Serial blood samples were analyzed for hemolytic activity, RBC opsonization, complement activation, and inflammation markers. Ten patients were included in the study. C1-INH administration increased plasma C1-INH antigen and activity, peaking at 48 hours after the first dose and accompanied by a significant reduction of RBC C3d deposition. Hemoglobin levels increased briefly after transfusion but returned to baseline within 48 hours. Overall, markers of hemolysis, inflammation, and complement activation remained unchanged. Five grade 3 and 1 grade 4 adverse event occurred but were considered unrelated to the study medication. In conclusion, peritransfusional C1-INH temporarily reduced complement activation. However, C1-INH failed to halt hemolytic activity in severe transfusion-dependent-CM-AIHA. We cannot exclude that posttransfusional hemolytic activity would have been even higher without C1-INH. The potential of complement inhibition on transfusion efficacy in severe CM-AIHA remains to be determined.
Collapse
Affiliation(s)
- Esther C. W. de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Marit Jalink
- Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands
- Department of Transfusion Medicine, Sanquin Blood Supply, Amsterdam, The Netherlands
| | - Laura Delvasto-Nuñez
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Elisabeth M. Meulenbroek
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Inge Baas
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
| | - Susanne R. Janssen
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Claudia C. Folman
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, The Netherlands
| | | | - Diana Wouters
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Marije D. Engel
- Department of Hematology, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Masja de Haas
- Department of Clinical Transfusion Research, Sanquin Research, Amsterdam, The Netherlands
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, The Netherlands
- Department of Hematology, Leiden University Medical Center, Leiden, The Netherlands
| | - Marie José Kersten
- Department of Hematology, Amsterdam University Medical Centers, Location University of Amsterdam, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner Laboratory, Amsterdam University Medical Centre, Amsterdam Infection and Immunity Institute, Amsterdam, The Netherlands
- Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children’s Hospital, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Sacha Zeerleder
- Department of Hematology, Luzerner Kantonsspital, Luzern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Josephine M. I. Vos
- Department of Immunohematology Diagnostics, Sanquin, Amsterdam, The Netherlands
- Department of Hematology, Amsterdam University Medical Centers, Location University of Amsterdam, Cancer Center Amsterdam and Lymphoma and Myeloma Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Berentsen S. Sutimlimab for the Treatment of Cold Agglutinin Disease. Hemasphere 2023; 7:e879. [PMID: 37153870 PMCID: PMC10155901 DOI: 10.1097/hs9.0000000000000879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Cold agglutinin disease (CAD) is a rare autoimmune hemolytic anemia and a bone marrow clonal lymphoproliferative disorder. Hemolysis in CAD is complement-dependent and mediated by the classical activation pathway. Patients also frequently suffer from fatigue and cold-induced circulatory symptoms. Although not all patients need treatment, the symptom burden has previously been underestimated. Effective therapies target the clonal lymphoproliferation or the complement activation. Sutimlimab, a humanized monoclonal IgG4 antibody that binds and inactivates complement protein C1s, is the most extensively investigated complement inhibitor for the treatment of CAD. This review addresses the preclinical studies of sutimlimab and the studies of pharmacokinetics and pharmacodynamics. We then describe and discuss the prospective clinical trials that established sutimlimab as a rapidly acting, highly efficacious, and low-toxic therapeutic agent. This complement inhibitor does not improve the cold-induced circulatory symptoms, which are not complement-mediated. Sutimlimab is approved for the treatment of CAD in the US, Japan, and the European Union. A tentative therapeutic algorithm is presented. The choice of therapy for CAD should be based on an individual assessment, and patients requiring therapy should be considered for inclusion in clinical trials.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| |
Collapse
|
6
|
Berentsen S, Fattizzo B, Barcellini W. The choice of new treatments in autoimmune hemolytic anemia: how to pick from the basket? Front Immunol 2023; 14:1180509. [PMID: 37168855 PMCID: PMC10165002 DOI: 10.3389/fimmu.2023.1180509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/13/2023] [Indexed: 05/13/2023] Open
Abstract
Autoimmune hemolytic anemia (AIHA) is defined by increased erythrocyte turnover mediated by autoimmune mechanisms. While corticosteroids remain first-line therapy in most cases of warm-antibody AIHA, cold agglutinin disease is treated by targeting the underlying clonal B-cell proliferation or the classical complement activation pathway. Several new established or investigational drugs and treatment regimens have appeared during the last 1-2 decades, resulting in an improvement of therapy options but also raising challenges on how to select the best treatment in individual patients. In severe warm-antibody AIHA, there is evidence for the upfront addition of rituximab to prednisolone in the first line. Novel agents targeting B-cells, extravascular hemolysis, or removing IgG will offer further options in the acute and relapsed/refractory settings. In cold agglutinin disease, the development of complement inhibitors and B-cell targeting agents makes it possible to individualize therapy, based on the disease profile and patient characteristics. For most AIHAs, the optimal treatment remains to be found, and there is still a need for more evidence-based therapies. Therefore, prospective clinical trials should be encouraged.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | - Bruno Fattizzo
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, and Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Wilma Barcellini
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
7
|
de Boer ECW, Thielen AJF, Langereis JD, Kamp A, Brouwer MC, Oskam N, Jongsma ML, Baral AJ, Spaapen RM, Zeerleder S, Vidarsson G, Rispens T, Wouters D, Pouw RB, Jongerius I. The contribution of the alternative pathway in complement activation on cell surfaces depends on the strength of classical pathway initiation. Clin Transl Immunology 2023; 12:e1436. [PMID: 36721662 PMCID: PMC9881211 DOI: 10.1002/cti2.1436] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 10/31/2022] [Accepted: 12/23/2022] [Indexed: 01/28/2023] Open
Abstract
Objectives The complement system is an important component of innate immunity. The alternative pathway (AP) amplification loop is considered an essential feed forward mechanism for complement activation. However, the role of the AP in classical pathway (CP) activation has only been studied in ELISA settings. Here, we investigated its contribution on physiologically relevant surfaces of human cells and bacterial pathogens and in antibody-mediated complement activation, including in autoimmune haemolytic anaemia (AIHA) setting with autoantibodies against red blood cells (RBCs). Methods We evaluated the contribution of the AP to complement responses initiated through the CP on human RBCs by serum of AIHA patients and recombinant antibodies. Moreover, we studied complement activation on Neisseria meningitidis and Escherichia coli. The effect of the AP was examined using either AP-depleted sera or antibodies against factor B and factor D. Results We show that the amplification loop is redundant when efficient CP activation takes place. This is independent of the presence of membrane-bound complement regulators. The role of the AP may become significant when insufficient CP complement activation occurs, but this depends on antibody levels and (sub)class. Our data indicate that therapeutic intervention in the amplification loop will most likely not be effective to treat antibody-mediated diseases. Conclusion The AP can be bypassed through efficient CP activation. The AP amplification loop has a role in complement activation during conditions of modest activation via the CP, when it can allow for efficient complement-mediated killing.
Collapse
Affiliation(s)
- Esther CW de Boer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| | - Astrid JF Thielen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Jeroen D Langereis
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life SciencesRadboudumcNijmegenThe Netherlands,Radboud Center for Infectious Diseases, RadboudumcNijmegenThe Netherlands
| | - Angela Kamp
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Mieke C Brouwer
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Nienke Oskam
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Marlieke L Jongsma
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - April J Baral
- Translational and Clinical Research InstituteNewcastle upon TyneUK
| | - Robbert M Spaapen
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Sacha Zeerleder
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Hematology, Luzerner KantonsspitalLuzern and University of BernBernSwitzerland,Department for BioMedical ResearchUniversity of BernBernSwitzerland
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research, and Landsteiner LaboratoryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - Theo Rispens
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands
| | - Diana Wouters
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Centre for Infectious Disease ControlNational Institute for Public Health and the Environment (RIVM)BilthovenThe Netherlands
| | - Richard B Pouw
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Sanquin Health SolutionsAmsterdamThe Netherlands
| | - Ilse Jongerius
- Department of Immunopathology, Sanquin Research and Landsteiner LaboratoryAmsterdam Infection and Immunity Institute, Amsterdam University Medical CentreAmsterdamThe Netherlands,Department of Pediatric Immunology, Rheumatology, and Infectious Diseases, Emma Children's HospitalAmsterdam University Medical CentreAmsterdamThe Netherlands
| |
Collapse
|
8
|
Panse J. Paroxysmal nocturnal hemoglobinuria: Where we stand. Am J Hematol 2023; 98 Suppl 4:S20-S32. [PMID: 36594182 DOI: 10.1002/ajh.26832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
For the last 20 years, therapy of paroxysmal nocturnal hemoglobinuria (PNH) relied-up until recently-on antibody based terminal complement inhibitionon. PNH pathophysiology-a mutational defect leading to partial or complete absence of complement-regulatory proteins on blood cells-leads to intravascular hemolysis and consequences such as thrombosis and other sequelae. A plethora of new drugs interfering with the proximal and terminal complement cascade are under recent development and the first "proof-of-pinciple" proximal complement inhibitor targeting C3 has been approved in 2021. "PNH: where we stand" will try to give a brief account on where we came from and where we stand focusing on approved therapeutic options. The associated improvements as well as potential consequences of actual and future treatments as well as their impact on the disease will continue to necessitate academic and scientific focus on improving treatment options as well as on side effects and outcomes relevant to individual patient lives and circumstances in order to develop effective, safe, and available treatment for all hemolytic PNH patients globally.
Collapse
Affiliation(s)
- Jens Panse
- Department of Oncology, Hematology, Hemostaseology and Stem Cell Transplantation, University Hospital RWTH Aachen, Aachen, Germany
- Center for Integrated Oncology (CIO), Aachen Bonn Cologne Düsseldorf (ABCD), Aachen, Germany
| |
Collapse
|
9
|
Berentsen S, Barcellini W, D'Sa S, Jilma B. Sutimlimab for treatment of cold agglutinin disease: why, how and for whom? Immunotherapy 2022; 14:1191-1204. [PMID: 35946351 DOI: 10.2217/imt-2022-0085] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Therapies for cold agglutinin disease have been directed at the pathogenic B-cell clone. Sutimlimab, a monoclonal antibody that targets C1s, is the first complement inhibitor to be extensively studied in cold agglutinin disease. Sutimlimab selectively blocks the classical activation pathway and leaves the alternative and lectin pathways intact. Trials have documented high response rates with rapid improvement in hemolysis, hemoglobin levels and fatigue scores and low toxicity. Sutimlimab was recently approved in the USA. This drug appears to be particularly useful in severely anemic patients who require a rapid response, in acute exacerbations that do not resolve spontaneously and in patients in whom chemoimmunotherapy is contraindicated or has failed. The choice of therapy in cold agglutinin disease should be individualized.
Collapse
Affiliation(s)
- Sigbjørn Berentsen
- Department of Research and Innovation, Haugesund Hospital, Helse Fonna Hospital Trust, Haugesund, Norway
| | - Wilma Barcellini
- Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Shirley D'Sa
- University College London Hospitals Centre for Waldenström and Associated Conditions, University College London Hospitals National Health Service Foundation Trust, London, UK
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
10
|
Affiliation(s)
- Daniel Ricklin
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland.
| | - Richard B Pouw
- Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056, Basel, Switzerland
| |
Collapse
|