1
|
Zhang Z, Zhang J, Yan X, Wang J, Huang H, Teng M, Liu Q, Han S. Dissecting the genetic basis and mechanisms underlying the associations between multiple extrahepatic factors and autoimmune liver diseases. J Transl Autoimmun 2025; 10:100260. [PMID: 39741931 PMCID: PMC11683281 DOI: 10.1016/j.jtauto.2024.100260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/02/2024] [Accepted: 11/03/2024] [Indexed: 01/03/2025] Open
Abstract
Background Autoimmune liver diseases (AILDs) encompass autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC). The onset of these diseases is fundamentally influenced by genetic susceptibility. Although various extrahepatic factors are potentially linked to AILDs, the genetic underpinnings and mechanisms of these associations remain unclear. Methods Utilizing large-scale genome-wide association study (GWAS) data, this study systematically investigated the relationships between extrahepatic autoimmune diseases (EHAIDs), immune cells, and various triggering factors with AILDs. Mendelian randomization (MR) was employed to assess the causal effects of these extrahepatic factors on AILDs, complemented by linkage disequilibrium score (LDSC) regression to uncover shared genetic architecture and causal effects underlying the associations between autoimmune diseases. We employed colocalization, enrichment analysis, and protein-protein interaction (PPI) network to identify the functions of shared loci. Additionally, we proposed that activated immune cells in the circulation may contribute to liver and biliary tract inflammation via migration, mediating the impact of extrahepatic factors on AILDs. This hypothesis was tested using two mediation analysis methods: two-step MR (TSMR) and multivariable MR (MVMR). Results Causal associations between multiple extrahepatic factors and AILDs were identified. Notably, CD27+ B cells were found to be a risk factor for PBC, while PSC progression was associated with CD28+ CD8+ T cells exhaustion and increased levels of CD28- CD8+ T cells. Mediation analyses revealed 64 pathways via TSMR and 15 pathways via MVMR, indicating that the effects of extrahepatic factors on AILDs may be mediated by circulating immune cells. The shared genetic architecture also contributed to these associations. Analysis of shared loci and gene functions identified ATXN2 as being shared between PBC and 9 EHAIDs, while SH2B3 and PSMG1 were shared with 6 and 5 EHAIDs, respectively, in PSC. Conclusions Our research compared three distinct AILDs, enhancing the understanding of their etiology and providing new evidence on risk factors, diagnostic markers, and potential therapeutic targets.
Collapse
Affiliation(s)
- Zheng Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiayi Zhang
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Xinyang Yan
- Department of Neurosurgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Jiachen Wang
- Department of Joint Surgery, HongHui Hospital, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Haoxiang Huang
- Department of urology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Menghao Teng
- Department of Orthopedics, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| | - Shaoshan Han
- Department of Hepatobiliary Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi Province, China
| |
Collapse
|
2
|
Wang F, Chen L, Tian Y. Immune traits in combination with inflammatory proteins revealing the pathogenesis of autoimmune liver diseases: A Mendelian randomization study. Cytokine 2025; 185:156815. [PMID: 39579619 DOI: 10.1016/j.cyto.2024.156815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 11/03/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND Prior observational research has shown relationships between immune cells, inflammatory proteins, and autoimmune liver diseases (AILD), but their causal associations remain controversial. Therefore, we aimed to clarify the causal association between them. METHODS We carried out a comprehensive Mendelian randomization (MR) analysis to clarify causal associations between 731 immune traits, 91 circulating inflammatory proteins, and AILD, including primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and autoimmune hepatitis (AIH). A two-step MR analysis was used to explore the mediating role of circulating inflammatory proteins. Additionally, we performed sensitivity analyses to evaluate the robustness of the results. RESULTS CD27 on IgD+CD24+B cell, CD27 on IgD-CD38dimB cell, CD27 on unswitched memory B cell, CD27 on switched memory B cell, and CD27 on CD24+CD27+B cell were risk factors for PBC. However, we detected protective effects of CD25 on IgD-CD27-B cell against PBC and CD28 on resting CD4+Treg cell against PSC. Circulating CD40, Interleukin-33, and Delta and Notch-like epidermal growth factor-related receptor were protective factors for PBC. Furthermore, CD40 mediated the association between immune traits and PBC, with the mediated proportions ranging from 18.3 % to 35.4 %. Tumor necrosis factor superfamily member 12 was identified as a risk factor for PSC, and monocyte chemotactic protein 3 was identified as a protective factor for PSC. Additionally, PBC and PSC had effects on eleven immune traits, which are suggested to be the consequences of them. We found no causal association between immune traits, circulating inflammatory proteins, and AIH. Sensitivity analyses demonstrated our results were robust. CONCLUSIONS Our results demonstrate the causal roles of immune traits and inflammatory proteins in PBC and PSC, which reveals their pathogenesis. It is necessary to investigate the specific mechanism by which immune cells and inflammatory proteins affecting the occurrence of AILD.
Collapse
Affiliation(s)
- Feifan Wang
- Department of Surgical, Hebei Medical University, Shijiazhuang 050017, China
| | - Lu Chen
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing 100191, China
| | - Yu Tian
- Department of Surgical, Hebei Medical University, Shijiazhuang 050017, China.; Department of Hand & Foot Surgery, First Hospital of Qinhuangdao, Qinhuangdao 066000, China..
| |
Collapse
|
3
|
Zhang J, Hu Y, Xu J, Shao H, Zhu Q, Si H. Genetically predicted immune cells mediate the association between gut microbiota and autoimmune liver diseases. Front Microbiol 2024; 15:1442506. [PMID: 39736991 PMCID: PMC11684339 DOI: 10.3389/fmicb.2024.1442506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/18/2024] [Indexed: 01/01/2025] Open
Abstract
Background Increasing evidence suggests an association between gut microbiota and Autoimmune Liver Diseases (AILDs). However, causal inference remains controversial due to confounding bias in observational studies. Additionally, there is currently no clear evidence indicating that immune cells act as intermediate phenotypes in the pathogenesis of AILDs. This study utilizes the Mendelian Randomization (MR) method to investigate the causal relationships among gut microbiota, immune cells, and AILDs. Methods Initially, we conducted a two-sample MR analysis to predict the causal relationships among 412 gut microbiota, 731 immune phenotypes, and AILDs. Subsequently, a series of sensitivity analyses were performed to validate the initial MR results and reverse MR analysis was conducted to exclude reverse causality. Finally, a two-step MR analysis was utilized to quantify the proportion of the impact of gut microbiota on AILDs mediated by immune cells. Results Following rigorous MR analysis, our findings indicate that increased involvement of the gut microbiome in the superpathway of L-tryptophan biosynthesis is positively associated with an elevated risk of Autoimmune Hepatitis (AIH). The effect is partially mediated by the CD14+ CD16+ monocyte Absolute Count, which accounts for 17.47% of the total effect. Moreover, the species Ruminococcus obeum appears to mediate the development of Primary Sclerosing Cholangitis (PSC) through CD62L-CD86+ myeloid Dendritic Cell %Dendritic Cell, contributing to 32.47% of the total observed effect. Conclusion Our study highlights the potential mediating mechanisms of immune cells in the causal relationship between the gut microbiome and AILDs. These insights provide a foundation for developing preventive strategies for AILDs in clinical practice.
Collapse
Affiliation(s)
- Jikang Zhang
- General Surgery Department, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yiqi Hu
- General Surgery Department, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jin Xu
- General Surgery Department, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hua Shao
- General Surgery Department, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Qingping Zhu
- Digestive Endoscopic Treatment Center, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Si
- General Surgery Department, Nanjing Pukou District Traditional Chinese Medicine Hospital, Nanjing, China
| |
Collapse
|
4
|
Schneider KM, Kummen M, Trivedi PJ, Hov JR. Role of microbiome in autoimmune liver diseases. Hepatology 2024; 80:965-987. [PMID: 37369002 PMCID: PMC11407779 DOI: 10.1097/hep.0000000000000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/25/2023] [Indexed: 06/29/2023]
Abstract
The microbiome plays a crucial role in integrating environmental influences into host physiology, potentially linking it to autoimmune liver diseases, such as autoimmune hepatitis, primary biliary cholangitis, and primary sclerosing cholangitis. All autoimmune liver diseases are associated with reduced diversity of the gut microbiome and altered abundance of certain bacteria. However, the relationship between the microbiome and liver diseases is bidirectional and varies over the course of the disease. This makes it challenging to dissect whether such changes in the microbiome are initiating or driving factors in autoimmune liver diseases, secondary consequences of disease and/or pharmacological intervention, or alterations that modify the clinical course that patients experience. Potential mechanisms include the presence of pathobionts, disease-modifying microbial metabolites, and more nonspecific reduced gut barrier function, and it is highly likely that the effect of these change during the progression of the disease. Recurrent disease after liver transplantation is a major clinical challenge and a common denominator in these conditions, which could also represent a window to disease mechanisms of the gut-liver axis. Herein, we propose future research priorities, which should involve clinical trials, extensive molecular phenotyping at high resolution, and experimental studies in model systems. Overall, autoimmune liver diseases are characterized by an altered microbiome, and interventions targeting these changes hold promise for improving clinical care based on the emerging field of microbiota medicine.
Collapse
Affiliation(s)
| | - Martin Kummen
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Oncology, Oslo University Hospital, Oslo, Norway
| | - Palak J. Trivedi
- National Institute for Health and Care Research Birmingham Biomedical Research Centre, Centre for Liver and Gastroenterology Research, University of Birmingham, UK
- Liver Unit, University Hospitals Birmingham Queen Elizabeth, Birmingham, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, UK
- Institute of Applied Health Research, University of Birmingham, UK
| | - Johannes R. Hov
- Norwegian PSC Research Center, Department of Transplantation Medicine, Oslo University Hospital Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Section of Gastroenterology, Department of Transplantation Medicine, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| |
Collapse
|
5
|
Zhang HP, Zhou Z, Chen K, Xiong LF, Wu J, Jin L. Primary biliary cholangitis has causal effects on systemic rheumatic diseases: a Mendelian randomization study. BMC Gastroenterol 2024; 24:294. [PMID: 39210292 PMCID: PMC11360496 DOI: 10.1186/s12876-024-03319-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/05/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND An association has been observed between primary biliary cholangitis (PBC) and systemic rheumatic diseases (SRDs) in observational studies, however the exact causal link remains unclear. We aimed to evaluate the causal effects of PBC on SRDs through Mendelian randomization (MR) analysis. METHODS The genome-wide association study (GWAS) summary data were obtained from MRC IEU OpenGWAS and FinnGen databases. Independent genetic variants for PBC were selected as instrumental variables. Inverse variance weighted was used as the main approach to evaluate the causal effects of PBC on Sjögren syndrome (SS), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), systemic sclerosis (SSc), mixed connective tissue disease (MCTD) and polymyositis (PM). Horizontal pleiotropy and heterogeneity were measured by MR‒Egger intercept test and Cochran's Q value, respectively. RESULTS PBC had causal effects on SS (OR = 1.177, P = 8.02e-09), RA (OR = 1.071, P = 9.80e-04), SLE (OR = 1.447, P = 1.04e-09), SSc (OR = 1.399, P = 2.52e-04), MCTD (OR = 1.306, P = 4.92e-14), and PM (OR = 1.416, P = 1.16e-04). Based on the MR‒Egger intercept tests, horizontal pleiotropy was absent (all P values > 0.05). The robustness of our results was further enhanced by the leave-one-out method. CONCLUSIONS Our research has provided new insights into PBC and SRDs, indicating casual effects on various SRDs.
Collapse
Affiliation(s)
- Hai-Ping Zhang
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Zhe Zhou
- Department of Radiology, The Affiliated Hospital of Wuhan Sports University, Wuhan, 430079, China
| | - Ke Chen
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Li-Fen Xiong
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Jun Wu
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China
| | - Lei Jin
- Department of Gastroenterology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430000, China.
| |
Collapse
|
6
|
Seida I, Al Shawaf M, Mahroum N. Fecal microbiota transplantation in autoimmune diseases - An extensive paper on a pathogenetic therapy. Autoimmun Rev 2024; 23:103541. [PMID: 38593970 DOI: 10.1016/j.autrev.2024.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
The role of infections in the pathogenesis of autoimmune diseases has long been recognized and reported. In addition to infectious agents, the internal composition of the "friendly" living bacteria, (microbiome) and its correlation to immune balance and dysregulation have drawn the attention of researchers for decades. Nevertheless, only recently, scientific papers regarding the potential role of transferring microbiome from healthy donor subjects to patients with autoimmune diseases has been proposed. Fecal microbiota transplantation or FMT, carries the logic of transferring microorganisms responsible for immune balance from healthy donors to individuals with immune dysregulation or more accurately for our paper, autoimmune diseases. Viewing the microbiome as a pathogenetic player allows us to consider FMT as a pathogenetic-based treatment. Promising results alongside improved outcomes have been demonstrated in patients with different autoimmune diseases following FMT. Therefore, in our current extensive review, we aimed to highlight the implication of FMT in various autoimmune diseases, such as inflammatory bowel disease, autoimmune thyroid and liver diseases, systemic lupus erythematosus, and type 1 diabetes mellitus, among others. Presenting all the aspects of FMT in more than 12 autoimmune diseases in one paper, to the best of our knowledge, is the first time presented in medical literature. Viewing FMT as such could contribute to better understanding and newer application of the model in the therapy of autoimmune diseases, indeed.
Collapse
Affiliation(s)
- Isa Seida
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Maisam Al Shawaf
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|
7
|
Wang Y, Zhou Z, Zhang HP. Causal association between systemic lupus erythematosus and primary biliary cholangitis: A bidirectional Mendelian randomization study. Medicine (Baltimore) 2024; 103:e38282. [PMID: 38788005 PMCID: PMC11124658 DOI: 10.1097/md.0000000000038282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
An association has been observed between systemic lupus erythematosus (SLE) and primary biliary cholangitis (PBC) in observational studies, however, the exact causal link remains unclear. We aim to evaluate the causal relationships between SLE and PBC through bidirectional Mendelian randomization (MR). Single-nucleotide polymorphisms (SNPs) were selected as instrumental variables from publicly accessible genome-wide association studies (GWAS) in European populations. The PBC and SLE GWAS data were obtained from the MRC IEU Open GWAS database, consisting of 24,510 and 14,267 samples, respectively. After a series of quality control and outlier removal, inverse variance weighted was used as the primary approach to evaluate the causal association between SLE and PBC. The horizontal pleiotropy and heterogeneity were examined by the MR-Egger intercept test and Cochran Q value, respectively. Seven SNPs were included to examine the causal effect of SLE on PBC. Genetically predicted SLE may increase the risk of PBC development, with an odds ratio (OR) of 1.324 (95% confidence interval [CI] 1.220 ∼ 1.437, P ˂ .001). Twenty SNPs were included to explore the causal effect of PBC on SLE. Genetically predicted PBC may increase the risk of SLE development, with an OR of 1.414 (95% CI 1.323 ∼ 1.511, P ˂ .001). Horizontal pleiotropy and heterogeneity were absent (P > .05) among SNPs. The robustness of our results was further enhanced by using the leave-one-out method. Our research has provided new insights into SLE and PBC, indicating bidirectional causal associations between the 2 diseases. These findings offer valuable contributions to future clinical studies.
Collapse
Affiliation(s)
- Ying Wang
- Department of Nephrology & Rheumatology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan City, China
| | - Zhe Zhou
- Department of Radiology, The Affiliated Hospital of Wuhan Sports University, Wuhan City, China
| | - Hai-Ping Zhang
- Department of Gastroenterology, Hubei NO.3 People’s Hospital of Jianghan University, Wuhan City, China
| |
Collapse
|
8
|
Schöler D, Schnabl B. The role of the microbiome in liver disease. Curr Opin Gastroenterol 2024; 40:134-142. [PMID: 38362864 PMCID: PMC10990783 DOI: 10.1097/mog.0000000000001013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
PURPOSE OF REVIEW The intestinal microbiome and the gut-liver axis play a major role in health and disease. The human gut harbors trillions of microbes and a disruption of the gut homeostasis can contribute to liver disease. In this review, the progress in the field within the last 3 years is summarized, focusing on metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-associated liver disease (ALD), autoimmune liver disease (AILD), and hepatocellular carcinoma (HCC). RECENT FINDINGS Changes in the fecal virome and fungal mycobiome have been described in patients with various liver diseases. Several microbial derived metabolites including endogenous ethanol produced by bacteria, have been mechanistically linked to liver disease such as MASLD. Virulence factors encoded by gut bacteria contribute to ALD, AILD and HCC. Novel therapeutic approaches focused on the microbiome including phages, pre- and postbiotics have been successfully used in preclinical models. Fecal microbiota transplantation has been effective in attenuating liver disease. Probiotics are safe in patients with alcohol-associated hepatitis and improve liver disease and alcohol addiction. SUMMARY The gut-liver axis plays a key role in the pathophysiology of liver diseases. Understanding the microbiota in liver disease can help to develop precise microbiota centered therapies.
Collapse
Affiliation(s)
- David Schöler
- Department of Medicine, University of California, San Diego
| | - Bernd Schnabl
- Department of Medicine, University of California, San Diego
- Department of Medicine, VA San Diego Healthcare System, San Diego, California, USA
| |
Collapse
|
9
|
Liu T, Gu J, Fu C, Su L. Three-Dimensional Scaffolds for Intestinal Cell Culture: Fabrication, Utilization, and Prospects. TISSUE ENGINEERING. PART B, REVIEWS 2024; 30:158-175. [PMID: 37646409 DOI: 10.1089/ten.teb.2023.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
The intestine is a visceral organ that integrates absorption, metabolism, and immunity, which is vulnerable to external stimulus. Researchers in the fields such as food science, immunology, and pharmacology have committed to developing appropriate in vitro intestinal cell models to study the intestinal absorption and metabolism mechanisms of various nutrients and drugs, or pathogenesis of intestinal diseases. In the past three decades, the intestinal cell models have undergone a significant transformation from conventional two-dimensional cultures to three-dimensional (3D) systems, and the achievements of 3D cell culture have been greatly contributed by the fabrication of different scaffolds. In this review, we first introduce the developing trend of existing intestinal models. Then, four types of scaffolds, including Transwell, hydrogel, tubular scaffolds, and intestine-on-a-chip, are discussed for their 3D structure, composition, advantages, and limitations in the establishment of intestinal cell models. Excitingly, some of the in vitro intestinal cell models based on these scaffolds could successfully mimic the 3D structure, microenvironment, mechanical peristalsis, fluid system, signaling gradients, or other important aspects of the original human intestine. Furthermore, we discuss the potential applications of the intestinal cell models in drug screening, disease modeling, and even regenerative repair of intestinal tissues. This review presents an overview of state-of-the-art scaffold-based cell models within the context of intestines, and highlights their major advances and applications contributing to a better knowledge of intestinal diseases. Impact statement The intestine tract is crucial in the absorption and metabolism of nutrients and drugs, as well as immune responses against external pathogens or antigens in a complex microenvironment. The appropriate experimental cell model in vitro is needed for in-depth studies of intestines, due to the limitation of animal models in dynamic control and real-time assessment of key intestinal physiological and pathological processes, as well as the "R" principles in laboratory animal experiments. Three-dimensional (3D) scaffold-based cell cultivation has become a developing tendency because of the superior cell proliferation and differentiation and more physiologically relevant environment supported by the customized 3D scaffolds. In this review, we summarize four types of up-to-date 3D cell culture scaffolds fabricated by various materials and techniques for a better recapitulation of some essential physiological and functional characteristics of original intestines compared to conventional cell models. These emerging 3D intestinal models have shown promising results in not only evaluating the pharmacokinetic characteristics, security, and effectiveness of drugs, but also studying the pathological mechanisms of intestinal diseases at cellular and molecular levels. Importantly, the weakness of the representative 3D models for intestines is also discussed.
Collapse
Affiliation(s)
- Tiange Liu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Jia Gu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Caili Fu
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
| | - Lingshan Su
- Department of Food Science and Technology, National University of Singapore (Suzhou) Research Institute, Suzhou, China
- Department of Food Science and Technology, National University of Singapore, Singapore, Singapore
| |
Collapse
|
10
|
Cui Y, Guo Y, Kong Y, Zhang G. Association between gut microbiota and autoimmune cholestatic liver disease, a Mendelian randomization study. Front Microbiol 2024; 15:1348027. [PMID: 38601930 PMCID: PMC11004368 DOI: 10.3389/fmicb.2024.1348027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/29/2024] [Indexed: 04/12/2024] Open
Abstract
Background Previous studies have suggested that the gut microbiota (GM) is closely associated with the development of autoimmune cholestatic liver disease (ACLD), but limitations, such as the presence of confounding factors, have resulted in a causal relationship between the gut microbiota and autoimmune cholestatic liver disease that remains uncertain. Thus, we used two-sample Mendelian randomization as a research method to explore the causal relationship between the two. Methods Pooled statistics of gut microbiota from a meta-analysis of genome-wide association studies conducted by the MiBioGen consortium were used as an instrumental variable for exposure factors. The Pooled statistics for primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC) were obtained from the R9 version of the FinnGen database (https://r9.finngen.fi/). Inverse-variance Weighted (IVW), cML-MA, MR-Egger regression, Weighted median (WME), Weighted mode (WM), and Simple mode (SM) were used to detect the association between intestinal flora and the causal relationship between intestinal flora and ACLD, in which IVW method was dominant, was assessed based on the effect indicator dominance ratio (odds ratio, OR) and 95% confidence interval (CI). Sensitivity analysis, heterogeneity test, gene pleiotropy test, MR pleiotropy residual sum and outlier test (MR-PRESSO) were combined to verify the stability and reliability of the results. Reverse Mendelian randomization analysis was performed on gut microbiota and found to be causally associated with ACLD. Results The IVW results showed that the relative abundance of the genus Clostridium innocuum group, genus Butyricicoccus, and genus Erysipelatoclostridium was negatively correlated with the risk of PBC, that is, increased abundance reduced the risk of PBC and was a protective, and the relative abundance of the genus Eubacterium hallii was positively correlated with the risk of PSC, which is a risk factor for PSC. Family Clostridiaceae1 and family Lachnospiraceae were negatively correlated with the risk of PSC, which is a protective factor for PSC. Conclusion This study found a causal relationship between gut microbiota and ACLD. This may provide valuable insights into gut microbiota-mediated pathogenesis of ACLD. It is necessary to conduct a large-sample randomized controlled trial (RCT) at a later stage to validate the associated role of the relevant gut microbiota in the risk of ACLD development and to explore the associated mechanisms.
Collapse
Affiliation(s)
- YangLin Cui
- First Clinical College of Medicine, Shandong University of Chinese Medicine, Jinan, China
| | - YuMeng Guo
- First Clinical College of Medicine, Shandong University of Chinese Medicine, Jinan, China
| | - YuChen Kong
- First Clinical College of Medicine, Shandong University of Chinese Medicine, Jinan, China
| | - GuangYe Zhang
- Classical Chinese Medicine Section, Rizhao Hospital of Traditional Chinese Medicine, Rizhao, China
| |
Collapse
|
11
|
Jayachandran M, Qu S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 2023; 24:1189-1204. [PMID: 37840104 DOI: 10.1007/s11154-023-09843-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It's also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world's population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota's potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.
Collapse
Affiliation(s)
- Muthukumaran Jayachandran
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shen Qu
- Department of Endocrinology and Metabolism, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- Shanghai center of Thyroid diseases, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
12
|
Miteva D, Peshevska-Sekulovska M, Snegarova V, Peruhova M, Vasilev GH, Vasilev GV, Sekulovski M, Lazova S, Gulinac M, Tomov L, Mihova A, Velikova T. Microbiome and Genetic Factors in the Pathogenesis of Liver Diseases. GASTROENTEROLOGY INSIGHTS 2023; 14:575-597. [DOI: 10.3390/gastroent14040041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2024] Open
Abstract
Our genetic background has not changed over the past century, but chronic diseases are on the rise globally. In addition to the genetic component, among the critical factors for many diseases are inhabitants of our intestines (gut microbiota) as a crucial environmental factor. Dysbiosis has been described in liver diseases with different etiologies like non-alcoholic fatty liver disease (NAFLD), alcohol-related liver disease (ALD), viral hepatitis, autoimmune hepatitis (AIH), primary sclerosing cholangitis (PSC), primary biliary cholangitis (PBC), cirrhosis, hepatocellular carcinoma (HCC). On the other hand, new technologies have increased our understanding of liver disease genetics and treatment options. Genome-wide association studies (GWAS) identify unknown genetic risk factors, positional cloning of unknown genes associated with different diseases, gene tests for single nucleotide variations (SNVs), and next-generation sequencing (NGS) of selected genes or the complete genome. NGS also allowed studying the microbiome and its role in various liver diseases has begun. These genes have proven their effect on microbiome composition in host genome–microbiome association studies. We focus on altering the intestinal microbiota, and supplementing some bacterial metabolites could be considered a potential therapeutic strategy. The literature data promote probiotics/synbiotics role in reducing proinflammatory cytokines such as TNF-α and the interleukins (IL-1, IL-6, IL-8), therefore improving transaminase levels, hepatic steatosis, and NAFLD activity score. However, even though microbial therapy appears to be risk-free, evaluating side effects related to probiotics or synbiotics is imperative. In addition, safety profiles for long-term usage should be researched. Thus, this review focuses on the human microbiome and liver diseases, recent GWASs on liver disease, the gut-liver axis, and the associations with the microbiome and microbiome during/after liver disease therapy.
Collapse
Affiliation(s)
- Dimitrina Miteva
- Department of Genetics, Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Monika Peshevska-Sekulovska
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Gastroenterology, University Hospital Lozenetz, Kozyak 1 Str., 1407 Sofia, Bulgaria
| | - Violeta Snegarova
- Clinic of Internal Diseases, Naval Hospital—Varna, Military Medical Academy, Medical Faculty, Medical University, Blvd. Hristo Smirnenski 3, 9000 Varna, Bulgaria
| | - Milena Peruhova
- Department of Gastroenterology, Heart and Brain Hospital, Zdrave 1 Str., 8000 Burgas, Bulgaria
| | - Georgi H. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Laboratory of Hematopathology and Immunology, National Specialized Hospital for Active Treatment of Hematological Diseases, “Plovdivsko Pole” Str. 6, 1756 Sofia, Bulgaria
| | - Georgi V. Vasilev
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Emergency Medicine and Clinic of Neurology, University Hospital “Sv. Georgi”, Blvd. Peshtersko Shose 66, 4000 Plovdiv, Bulgaria
| | - Metodija Sekulovski
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Anesthesiology and Intensive Care, University Hospital Lozenetz, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Snezhina Lazova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Pediatric Department, University Hospital “N. I. Pirogov”, 21 “General Eduard I. Totleben” Blvd, 1606 Sofia, Bulgaria
- Department of Healthcare, Faculty of Public Health, “Prof. Tsekomir Vodenicharov, MD, DSc”, Medical University of Sofia, Bialo More 8 Str., 1527 Sofia, Bulgaria
| | - Milena Gulinac
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of General and Clinical Pathology, Medical University of Plovdiv, Bul. Vasil Aprilov 15A, 4000 Plovdiv, Bulgaria
| | - Latchezar Tomov
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
- Department of Informatics, New Bulgarian University, Montevideo 21 Str., 1618 Sofia, Bulgaria
| | - Antoaneta Mihova
- SMDL Ramus, Department of Immunology, Blvd. Kap. Spisarevski 26, 1527 Sofia, Bulgaria
| | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| |
Collapse
|
13
|
Hahn JW, Yang HR, Moon JS, Chang JY, Lee K, Kim GA, Rahmati M, Koyanagi A, Smith L, Kim MS, López Sánchez GF, Elena D, Shin JY, Shin JI, Kwon R, Kim S, Kim HJ, Lee H, Ko JS, Yon DK. Global incidence and prevalence of autoimmune hepatitis, 1970-2022: a systematic review and meta-analysis. EClinicalMedicine 2023; 65:102280. [PMID: 37876996 PMCID: PMC10590724 DOI: 10.1016/j.eclinm.2023.102280] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/24/2023] [Accepted: 10/02/2023] [Indexed: 10/26/2023] Open
Abstract
Background Autoimmune hepatitis (AIH) varies significantly in incidence and prevalence across countries and regions. We aimed to examine global, regional, and national trends in incidence and prevalence of AIH from 1970 to 2022. Methods We conducted a thorough search of the PubMed/MEDLINE, Embase, CINAHL, Google Scholar, and Cochrane databases from database inception to August 9, 2023, using the search term "autoimmune hepatitis" in combination with "incidence," "prevalence," or "trend." Only general population-based observational studies with larger samples sizes were considered for inclusion. Studies that recruited convenience samples, and those with fewer than 50 participants were excluded. Summary data were extracted from published reports. A random effects model was used and pooled estimates with 95% CI were used to calculate the incidence and prevalence of AIH. Heterogeneity was evaluated using the I2 statistic. The study protocol was registered with PROSPERO, CRD42023430138. Findings A total of 37 eligible studies, encompassing more than 239 million participants and 55,839 patients with AIH from 18 countries across five continents, were included in the analysis. Global pooled incidence and prevalence of AIH were found to be 1.28 cases per 100,000 inhabitant-years (95% CI, 1.01-1.63, I2 = 99·51%; number of studies, 33; sample population, 220,673,674) and 15.65 cases per 100,000 inhabitants (95% CI, 13.42-18.24, I2 = 99·75%; number of studies, 26; sample population, 217,178,684), respectively. The incidence of AIH was greater in countries with high Human Development Index (>0.92), in North America and Oceania (compared with Asia), among females, adults (compared with children), and high latitude (>45°). Similar patterns in AIH prevalence were observed. Pooled AIH prevalence increased gradually from 1970 to 2019 (1970-1999; 9.95 [4.77-15.13], I2 = 95·58% versus 2015-2022; 27.91 [24.86-30.96], I2 = 99·32%; cases per 100,000 inhabitants). The overall incidence and prevalence of AIH, as well as some subgroup analyses of the studies, displayed asymmetry in the funnel plots, suggesting potential evidence of publication bias. Interpretation AIH incidence and prevalence have increased significantly and exhibit substantial variation across regions worldwide. Further research is required to assess the incidence and prevalence of AIH, specifically in South America and Africa. Funding National Research Foundation of Korea.
Collapse
Affiliation(s)
- Jong Woo Hahn
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Paediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Hye Ran Yang
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, South Korea
- Department of Paediatrics, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Jin Soo Moon
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Ju Young Chang
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Kwanjoo Lee
- Digestive Disease Centre, CHA Bundang Medical Centre, CHA University School of Medicine, Seongnam, South Korea
| | - Gi Ae Kim
- Department of Internal Medicine, Kyung Hee University School of Medicine, Seoul, South Korea
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Ai Koyanagi
- Research and Development Unit, Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| | - Lee Smith
- Centre for Health, Performance and Wellbeing, Anglia Ruskin University, Cambridge, UK
| | - Min Seo Kim
- Cardiovascular Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Guillermo F. López Sánchez
- Division of Preventive Medicine and Public Health, Department of Public Health Sciences, School of Medicine, University of Murcia, Murcia, Spain
| | - Dragioti Elena
- Pain and Rehabilitation Centre, Department of Medical and Health Sciences, Linköping University, Linköping, Sweden
- Research Laboratory Psychology of Patients, Families, and Health Professionals, Department of Nursing, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ju-Young Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, South Korea
| | - Jae Il Shin
- Department of Paediatrics, Yonsei University College of Medicine, Seoul, South Korea
| | - Rosie Kwon
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Soeun Kim
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hyeon Jin Kim
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Hojae Lee
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
| | - Jae Sung Ko
- Department of Paediatrics, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Keon Yon
- Centre for Digital Health, Medical Science Research Institute, Kyung Hee University College of Medicine, Seoul, South Korea
- Department of Regulatory Science, Kyung Hee University, Seoul, South Korea
- Department of Paediatrics, Kyung Hee University Medical Centre, Kyung Hee University College of Medicine, Seoul, South Korea
| |
Collapse
|
14
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
15
|
Stojic J, Kukla M, Grgurevic I. The Intestinal Microbiota in the Development of Chronic Liver Disease: Current Status. Diagnostics (Basel) 2023; 13:2960. [PMID: 37761327 PMCID: PMC10528663 DOI: 10.3390/diagnostics13182960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/06/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Chronic liver disease (CLD) is a significant global health burden, leading to millions of deaths annually. The gut-liver axis plays a pivotal role in this context, allowing the transport of gut-derived products directly to the liver, as well as biological compounds from the liver to the intestine. The gut microbiota plays a significant role in maintaining the health of the digestive system. A change in gut microbiome composition as seen in dysbiosis is associated with immune dysregulation, altered energy and gut hormone regulation, and increased intestinal permeability, contributing to inflammatory mechanisms and damage to the liver, irrespective of the underlying etiology of CLD. The aim of this review is to present the current knowledge about the composition of the intestinal microbiome in healthy individuals and those with CLD, including the factors that affect this composition, the impact of the altered microbiome on the liver, and the mechanisms by which it occurs. Furthermore, this review analyzes the effects of gut microbiome modulation on the course of CLD, by using pharmacotherapy, nutrition, fecal microbiota transplantation, supplements, and probiotics. This review opens avenues for the translation of knowledge about gut-liver interplay into clinical practice as an additional tool to fight CLD and its complications.
Collapse
Affiliation(s)
- Josip Stojic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
| | - Michał Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagellonian University Medical College, 31-688 Kraków, Poland;
- Department of Endoscopy, University Hospital, 30-688 Kraków, Poland
| | - Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10000 Zagreb, Croatia;
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, 10000 Zagreb, Croatia
| |
Collapse
|
16
|
Liang J, Kelly DR, Pai A, Gillis LA, Sanchez LHG, Shiau HH, Wang H, Correa H, Mohammad S, Washington K. Clinicopathologic Features of Severe Acute Hepatitis Associated With Adenovirus Infection in Children. Am J Surg Pathol 2023; 47:977-989. [PMID: 37357941 DOI: 10.1097/pas.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
A recent increase in reports of severe acute hepatitis of unknown etiology in children is under investigation. Although adenovirus has been frequently detected, its role remains unclear, and systematic histopathologic analysis is lacking. We conducted a retrospective study of 11 children hospitalized between October 2021 and May 2022 with unexplained acute hepatitis and concurrent adenovirus infection. Liver biopsies collected shortly after admission demonstrated moderately to severely active hepatitis in 8/11 (73%) cases, characterized by marked portal mixed inflammation, moderate-to-severe interface activity, and milder lobular inflammation. Clusters of plasma cells were present in 6/11 (55%) cases, mimicking autoimmune hepatitis. Semiquantitative scoring of 17 discrete histologic features found that greater degrees of portal inflammation, interface activity, bile duct injury, bile ductular reaction, lobular inflammation, Kupffer cell activation, and hepatocyte focal necrosis were significantly more common in these cases in comparison to the control group of unexplained acute severe hepatitis without adenovirus infection. Liver biopsy immunohistochemistry was negative for adenovirus in all cases. Polymerase chain reaction testing of liver tissue was positive for the enteric adenovirus serotypes 41 (species F) in 10/11 (91%) cases. An immunoprofile study of hepatic infiltrating lymphocytes in 1 patient revealed the presence of large numbers of CD3 + and CD4 + lymphocytes. Nine patients received supportive treatment without steroids and recovered without the need for liver transplantation. In summary, liver injury in children with severe acute hepatitis and adenovirus infection is characterized by a hepatitic pattern that resembles severe autoimmune hepatitis and may represent an immune-mediated process associated with viral infection.
Collapse
Affiliation(s)
- Jiancong Liang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - David R Kelly
- Department of Pathology and Laboratory Medicine, Children's of Alabama
| | - Anita Pai
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Lynette A Gillis
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Luz Helena Gutierrez Sanchez
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The University of Alabama at Birmingham, Birmingham, AL
| | - Henry H Shiau
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, The University of Alabama at Birmingham, Birmingham, AL
| | - Huiying Wang
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Hernan Correa
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| | - Saeed Mohammad
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN
| | - Kay Washington
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center
| |
Collapse
|
17
|
Yadav V, Irfan R, Safdar S, Sunkara V, Ekhator C, Pendyala PR, Devi M, Shahzed SMI, Das A, Affaf M, Bellegarde SB, Shrestha R, Naseem MA, Al Khalifa A. Advances in Understanding and Managing Autoimmune Hepatitis: A Narrative Review. Cureus 2023; 15:e43973. [PMID: 37622052 PMCID: PMC10446851 DOI: 10.7759/cureus.43973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2023] [Indexed: 08/26/2023] Open
Abstract
Autoimmune hepatitis (AIH) is a chronic liver disease characterized by immune-mediated destruction of hepatocytes, leading to inflammation and fibrosis. In recent years, significant advances have been made in understanding the pathogenesis, epidemiology, diagnosis, and treatment of AIH. This comprehensive narrative review aims to provide an up-to-date overview of these advances. The review begins by outlining the historical background of AIH, dating back to its initial recognition in the 1940s, and highlights the evolution of diagnostic criteria and classification based on autoantibody profiles. The epidemiology of AIH is explored, discussing its varying prevalence across different regions and the role of genetic predisposition, viral infections, and drug exposure as risk factors. Furthermore, the review delves into the pathogenesis of AIH, focusing on the dysregulated immune response, involvement of T cells, and potential contribution of the gut microbiome. Clinical presentation, diagnostic criteria, and liver biopsy as crucial tools for diagnosis are also discussed. Regarding management, the review provides an in-depth analysis of the standard first-line treatments involving glucocorticoids and azathioprine, as well as alternative therapies for non-responsive cases. Additionally, emerging second and third-line treatment options are examined. In conclusion, this narrative review highlights the complexity of AIH and underscores the importance of early diagnosis and individualized treatment approaches to improve patient outcomes. Further research and clinical trials are needed to optimize AIH management and ensure a better long-term prognosis for affected individuals.
Collapse
Affiliation(s)
- Vikas Yadav
- Internal Medicine, Pandit Bhagwat Dayal Sharma Post Graduate Institute of Medical Sciences, Rohtak, IND
| | | | | | | | - Chukwuyem Ekhator
- Neuro-Oncology, New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, USA
| | - Praful R Pendyala
- Neurology, Chalmeda Anand Rao Institute of Medical Sciences, Karimnagar, IND
| | | | | | - Archana Das
- Internal Medicine, North East Medical College and Hospital, Sylhet, BGD
| | - Maryam Affaf
- Medicine, Khyber Medical University, Peshawar, PAK
| | - Sophia B Bellegarde
- Pathology and Laboratory Medicine, American University of Antigua, St. John's, ATG
| | - Riya Shrestha
- Medicine, Nepal Medical College and Teaching Hospital, Kathmandu, NPL
| | | | - Ahmed Al Khalifa
- Medical School, College of Medicine, Sulaiman Alrajhi University, Al Bukayriyah, SAU
| |
Collapse
|
18
|
Czaja AJ. Incorporating the Molecular Mimicry of Environmental Antigens into the Causality of Autoimmune Hepatitis. Dig Dis Sci 2023:10.1007/s10620-023-07967-5. [PMID: 37160542 PMCID: PMC10169207 DOI: 10.1007/s10620-023-07967-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 05/01/2023] [Indexed: 05/11/2023]
Abstract
Molecular mimicry between foreign and self-antigens has been implicated as a cause of autoimmune hepatitis in experimental models and cross-reacting antibodies in patients. This review describes the experimental and clinical evidence for molecular mimicry as a cause of autoimmune hepatitis, indicates the limitations and uncertainties of this premise, and encourages investigations that assess diverse environmental antigens as sources of disease-relevant molecular mimics. Pertinent articles were identified in PubMed using multiple search phrases. Several pathogens have linear or conformational epitopes that mimic the self-antigens of autoimmune hepatitis. The occurrence of an acute immune-mediated hepatitis after vaccination for severe acute respiratory syndrome (SARS)-associated coronavirus 2 (SARS-CoV-2) has suggested that vaccine-induced peptides may mimic disease-relevant tissue antigens. The intestinal microbiome is an under-evaluated source of gut-derived antigens that could also engage in molecular mimicry. Chaperone molecules may enhance the pathogenicity of molecular mimics, and they warrant investigation. Molecular mimics of immune dominant epitopes within cytochrome P450 IID6, the autoantigen most closely associated with autoimmune hepatitis, should be sought in diverse environmental antigens and assessed for pathogenicity. Avoidance strategies, dietary adjustments, vaccine improvement, and targeted manipulation of the intestinal microbiota may emerge as therapeutic possibilities. In conclusion, molecular mimicry may be a missing causality of autoimmune hepatitis. Molecular mimics of key immune dominant epitopes of disease-specific antigens must be sought in diverse environmental antigens. The ubiquity of molecular mimicry compels rigorous assessments of peptide mimics for immunogenicity and pathogenicity in experimental models. Molecular mimicry may complement epigenetic modifications as causative mechanisms of autoimmune hepatitis.
Collapse
Affiliation(s)
- Albert J Czaja
- Professor Emeritus of Medicine, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, MN, 55905, USA.
| |
Collapse
|
19
|
Bragazzi MC, Venere R, Vignone A, Alvaro D, Cardinale V. Role of the Gut–Liver Axis in the Pathobiology of Cholangiopathies: Basic and Clinical Evidence. Int J Mol Sci 2023; 24:ijms24076660. [PMID: 37047635 PMCID: PMC10095354 DOI: 10.3390/ijms24076660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
The “Gut–Liver Axis” refers to the physiological bidirectional interplay between the gut and its microbiota and the liver which, in health, occurs thanks to a condition of immune tolerance. In recent years, several studies have shown that, in case of a change in gut bacterial homeostasis or impairment of intestinal barrier functions, cholangiocytes, which are the epithelial cells lining the bile ducts, activate innate immune responses against gut-derived microorganisms or bacterial products that reach the liver via enterohepatic circulation. Intestinal dysbiosis or impaired intestinal barrier functions cause cholangiocytes to be exposed to an increasing amount of microorganisms that can reactivate inflammatory responses, thus inducing the onset of liver fibrosis. The present review focuses on the role of the gut–liver axis in the pathogenesis of cholangiopathies.
Collapse
Affiliation(s)
- Maria Consiglia Bragazzi
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Rosanna Venere
- Department of Medical-Surgical Sciences and Biotechnology, Sapienza University of Rome Polo Pontino, 04100 Roma, Italy
| | - Anthony Vignone
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| | - Vincenzo Cardinale
- Department of Translational and Precision Medicine, Sapienza University of Rome, 04100 Roma, Italy
| |
Collapse
|
20
|
Fiorotto R, Mariotti V, Taleb SA, Zehra SA, Nguyen M, Amenduni M, Strazzabosco M. Cell-matrix interactions control biliary organoid polarity, architecture, and differentiation. Hepatol Commun 2023; 7:e0094. [PMID: 36972396 PMCID: PMC10503667 DOI: 10.1097/hc9.0000000000000094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND AND AIMS Cholangiopathies are an important cause of morbidity and mortality. Their pathogenesis and treatment remain unclear in part because of the lack of disease models relevant to humans. Three-dimensional biliary organoids hold great promise; however, the inaccessibility of their apical pole and the presence of extracellular matrix (ECM) limits their application. We hypothesized that signals coming from the extracellular matrix regulate organoids' 3-dimensional architecture and could be manipulated to generate novel organotypic culture systems. APPROACH AND RESULTS Biliary organoids were generated from human livers and grown embedded into Culturex Basement Membrane Extract as spheroids around an internal lumen (EMB). When removed from the EMC, biliary organoids revert their polarity and expose the apical membrane on the outside (AOOs). Functional, immunohistochemical, and transmission electron microscope studies, along with bulk and single-cell transcriptomic, demonstrate that AOOs are less heterogeneous and show increased biliary differentiation and decreased expression of stem cell features. AOOs transport bile acids and have competent tight junctions. When cocultured with liver pathogenic bacteria (Enterococcus spp.), AOOs secrete a range of proinflammatory chemokines (ie, MCP1, IL8, CCL20, and IP-10). Transcriptomic analysis and treatment with a beta-1-integrin blocking antibody identified beta-1-integrin signaling as a sensor of the cell-extracellular matrix interaction and a determinant of organoid polarity. CONCLUSIONS This novel organoid model can be used to study bile transport, interactions with pathobionts, epithelial permeability, cross talk with other liver and immune cell types, and the effect of matrix changes on the biliary epithelium and obtain key insights into the pathobiology of cholangiopathies.
Collapse
Affiliation(s)
- Romina Fiorotto
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Valeria Mariotti
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Shakila Afroz Taleb
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Syeda A. Zehra
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mytien Nguyen
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mariangela Amenduni
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| | - Mario Strazzabosco
- Department of Internal Medicine, Section of Digestive Diseases, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
21
|
Wang J, Sun Z, Xie J, Ji W, Cui Y, Ai Z, Liang G. Inflammasome and pyroptosis in autoimmune liver diseases. Front Immunol 2023; 14:1150879. [PMID: 36969233 PMCID: PMC10030845 DOI: 10.3389/fimmu.2023.1150879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 02/23/2023] [Indexed: 03/11/2023] Open
Abstract
Autoimmune hepatitis (AIH), primary biliary cholangitis (PBC), primary sclerosing cholangitis (PSC), and IgG4-related sclerosing cholangitis (IgG4-SC) are the four main forms of autoimmune liver diseases (AILDs), which are all defined by an aberrant immune system attack on the liver. Most previous studies have shown that apoptosis and necrosis are the two major modes of hepatocyte death in AILDs. Recent studies have reported that inflammasome-mediated pyroptosis is critical for the inflammatory response and severity of liver injury in AILDs. This review summarizes our present understanding of inflammasome activation and function, as well as the connections among inflammasomes, pyroptosis, and AILDs, thus highlighting the shared features across the four disease models and gaps in our knowledge. In addition, we summarize the correlation among NLRP3 inflammasome activation in the liver-gut axis, liver injury, and intestinal barrier disruption in PBC and PSC. We summarize the differences in microbial and metabolic characteristics between PSC and IgG4-SC, and highlight the uniqueness of IgG4-SC. We explore the different roles of NLRP3 in acute and chronic cholestatic liver injury, as well as the complex and controversial crosstalk between various types of cell death in AILDs. We also discuss the most up-to-date developments in inflammasome- and pyroptosis-targeted medicines for autoimmune liver disorders.
Collapse
Affiliation(s)
- Jixuan Wang
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zhiwen Sun
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jingri Xie
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wanli Ji
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yang Cui
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Zongxiong Ai
- School of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| | - Guoying Liang
- Department of Liver, Spleen and Stomach Diseases, First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
- *Correspondence: Guoying Liang, ; Zongxiong Ai,
| |
Collapse
|
22
|
Intestinal microbiota in biliary diseases. Curr Opin Gastroenterol 2023; 39:95-102. [PMID: 36821457 DOI: 10.1097/mog.0000000000000910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
PURPOSE OF REVIEW Biliary diseases are a group of disease affecting biliary tract, including immune-mediated primary biliary cholangitis (PBC) and primary sclerosing cholangitis (PSC). With limited treatment options, PBC and PSC may lead to liver cirrhosis. RECENT FINDINGS Emerging evidence has shown the participation of gut microbiota in the etiology of PBC and PSC. Patients with PBC and PSC exhibit alterations in gut microbiota composition. Dysfunctional gut barrier facilitates the translocation of possible pathogenic bacteria and derived metabolites. Along with molecular mimicry between host and bacterial antigen, these factors result in aberrant auto-immune activation, and subsequently lead to liver injury. Though the precise mechanism has not been fully elucidated, studies investigating the role of gut microbiota in pathogenesis of PBC and PSC have inspired novel biomarkers and therapeutic strategies. SUMMARY In this review, recent evidence on the alteration of intestinal microbiota and possible mechanistic and therapeutic applications are discussed, predominantly focusing on PSC and PBC.
Collapse
|
23
|
Abstract
Autoimmune hepatitis is an inflammatory disease of the liver of unknown cause that may progress to liver cirrhosis and end stage liver failure if diagnosis is overlooked and treatment delayed. The clinical presentation is often that of acute hepatitis, sometimes very severe; less frequently, it can be insidious or completely asymptomatic. The disease can affect people of any age and is more common in women; its incidence and prevalence seem to be on the rise worldwide. An abnormal immune response targeting liver autoantigens and inducing persistent and self-perpetuating liver inflammation is the pathogenic mechanism of the disease. A specific set of autoantibodies, increased IgG concentrations, and histological demonstration of interface hepatitis and periportal necrosis are the diagnostic hallmarks of autoimmune hepatitis. Prompt response to treatment with corticosteroids and other immunomodulatory drugs is almost universal and supports the diagnosis. The aims of treatment are to induce and maintain long term remission of liver inflammation. Treatment can often even reverse liver fibrosis, thus preventing progression to advanced cirrhosis and its complications. Most patients need lifelong maintenance therapy, and repeated follow-up in experienced hands improves the quality of care and quality of life for affected patients.
Collapse
Affiliation(s)
- Luigi Muratori
- DIMEC, Università di Bologna and IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| | - Marco Lenzi
- DIMEC, Università di Bologna and IRCCS Policlinico di Sant'Orsola, Bologna, Italy
- European Reference Network for Hepatological Diseases (ERN RARE-LIVER)
| |
Collapse
|
24
|
Kasztelan-Szczerbinska B, Rycyk-Bojarzynska A, Szczerbinska A, Cichoz-Lach H. Selected Aspects of the Intricate Background of Immune-Related Cholangiopathies-A Critical Overview. Nutrients 2023; 15:760. [PMID: 36771465 PMCID: PMC9921714 DOI: 10.3390/nu15030760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary biliary cholangitis (PBC), and primary sclerosing cholangitis (PSC) are rare immune-related cholangiopathies with still poorly explained pathogenesis. Although triggers of chronic inflammation with subsequent fibrosis that affect cholangiocytes leading to obliteration of bile ducts and conversion to liver cirrhosis are unclear, both disorders are regarded to be multifactorial. Different factors can contribute to the development of hepatocellular injury in the course of progressive cholestasis, including (1) body accumulation of bile acids and their toxicity, (2) decreased food intake and nutrient absorption, (3) gut microbiota transformation, and (4) reorganized host metabolism. Growing evidence suggests that intestinal microbiome composition not only can be altered by liver dysfunction, but in turn, it actively impacts hepatic conditions. In this review, we highlight the role of key factors such as the gut-liver axis, intestinal barrier integrity, bile acid synthesis and circulation, and microbiome composition, which seem to be strongly related to PBC and PSC outcome. Emerging treatments and future therapeutic strategies are also presented.
Collapse
Affiliation(s)
- Beata Kasztelan-Szczerbinska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | - Anna Rycyk-Bojarzynska
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| | | | - Halina Cichoz-Lach
- Department of Gastroenterology with Endoscopy Unit, Medical University of Lublin, 8 Jaczewski Street, 20-954 Lublin, Poland
| |
Collapse
|
25
|
Fu K, Chen X, Shou N, Wang Z, Yuan X, Wu D, Wang Q, Cheng Y, Ling N, Shi Z. Swainsonine Induces Liver Inflammation in Mice via Disturbance of Gut Microbiota and Bile Acid Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1758-1767. [PMID: 36638362 DOI: 10.1021/acs.jafc.2c08519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Swainsonine induced liver inflammation in livestock; however, the underlying mechanisms, especially the role of bile acids (BAs), in the pathogenesis remained elusive. Here, our results showed that swainsonine induced hepatic inflammation via changing BA metabolism and gut microbiota in mice. Swainsonine significantly upregulated the levels of deoxycholic acid (DCA) and taurine-β-muricholic acid (T-β-MCA) in the serum and liver of mice due to the markedly increased genus Clostridium and the decreased genus Lactobacillus in the gut. As antagonists of the farnesoid X receptor (FXR), elevated DCA and T-β-MCA inhibited hepatic Fxr gene expression and thus suppressed FXR-SHP signaling and activated hepatic Cyp7a1 gene expression, which induced a significant upregulation of the total BA level in serum, contributing to liver inflammation. These findings offer new insights into the underlying mechanisms in which swainsonine induced liver inflammation in mice via the gut-liver axis and suggest that gut microbiota and its metabolite BAs may be underlying triggering factors.
Collapse
Affiliation(s)
- Keyi Fu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xi Chen
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Na Shou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zilong Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Xuefeng Yuan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Dandan Wu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Qi Wang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Yanfen Cheng
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Ning Ling
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| | - Zunji Shi
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
26
|
Ionescu VA, Gheorghe G, Varlas VN, Stanescu AMA, Diaconu CC. Hepatobiliary Impairments in Patients with Inflammatory Bowel Diseases: The Current Approach. GASTROENTEROLOGY INSIGHTS 2022; 14:13-26. [DOI: 10.3390/gastroent14010002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2025] Open
Abstract
Inflammatory bowel disease (IBD) refers to chronic conditions with a low mortality but high disability. The multisystemic nature of these diseases can explain the appearance of some extraintestinal manifestations, including liver damage. Abnormal liver biochemical tests can be identified in approximately one third of patients with IBD and chronic liver disease in 5% of them. Among the liver diseases associated with IBD are primary sclerosing cholangitis, cholelithiasis, fatty liver disease, hepatic amyloidosis, granulomatous hepatitis, drug-induced liver injury, venous thromboembolism, primary biliary cholangitis, IgG4-related cholangiopathy, autoimmune hepatitis, liver abscesses or the reactivation of viral hepatitis. The most common disease is primary sclerosing cholangitis, a condition diagnosed especially in patients with ulcerative colitis. The progress registered in recent years in the therapeutic management of IBD has not eliminated the risk of drug-induced liver disease. Additionally, the immunosuppression encountered in these patients increases the risk of opportunistic infections, including the reactivation of viral hepatitis. Currently, one of the concerns consists of establishing an efficiency and safety profile of the use of direct-acting antiviral agents (DAA) among patients with hepatitis C and IBD. Early diagnosis and optimal treatment of liver complications can improve the prognoses of these patients.
Collapse
Affiliation(s)
- Vlad Alexandru Ionescu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Gina Gheorghe
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Gastroenterology Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
| | - Valentin Nicolae Varlas
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
| | | | - Camelia Cristina Diaconu
- Faculty of Medicine, University of Medicine and Pharmacy Carol Davila Bucharest, 050474 Bucharest, Romania
- Internal Medicine Department, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania
- Medical Sciences Section, Academy of Romanian Scientists, 050085 Bucharest, Romania
| |
Collapse
|
27
|
Schramm C, Oo YH, Lohse AW. Tolerance and autoimmunity in the liver. Semin Immunopathol 2022; 44:393-395. [PMID: 35788895 PMCID: PMC9256554 DOI: 10.1007/s00281-022-00952-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Christoph Schramm
- Ist Dept of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
- European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany.
| | - Ye H Oo
- European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
- Liver Transplant Unit, Centre for Rare Disease, Birmingham & Centre for Liver and Gastro Research, Institute of Immunology and Immunotherapy, Queen Elizabeth Hospital, University Hospital of Birmingham, University of Birmingham, Birmingham, UK
| | - Ansgar W Lohse
- Ist Dept of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany
- Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
- European Reference Network On Hepatological Diseases (ERN RARE-LIVER), Hamburg, Germany
| |
Collapse
|