1
|
Yi B, Dalpke AH. Revisiting the intrageneric structure of the genus Pseudomonas with complete whole genome sequence information: Insights into diversity and pathogen-related genetic determinants. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105183. [PMID: 34920102 DOI: 10.1016/j.meegid.2021.105183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 08/09/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Pseudomonas spp. exhibit considerable differences in host specificity and virulence. Most Pseudomonas species were isolated exclusively from environmental sources, ranging from soil to plants, but some Pseudomonas species have been detected from versatile sources, including both human host and environmental sources. Understanding genome variations that generate the tremendous diversity in Pseudomonas biology is important in controlling the incidence of infections. With a data set of 704 Pseudomonas complete whole genome sequences representing 186 species, Pseudomonas intrageneric structure was investigated by hierarchical clustering based on average nucleotide identity, and by phylogeny analysis based on concatenated core-gene alignment. Further comparative functional analyses indicated that Pseudomonas species only living in natural habitats lack multiple functions that are important in the regulation of bacterial pathogenesis, indicating the possession of these functions might be characteristic of Pseudomonas human pathogens. Moreover, we have performed pan-genome based homogeneity analyses, and detected genes with conserved structures but diversified functions across the Pseudomonas genomes, suggesting these genes play a role in driving diversity. In summary, this study provided insights into the dynamics of genome diversity and pathogen-related genetic determinants in Pseudomonas, which might help the development of more targeted antibiotics for the treatment of Pseudomonas infections.
Collapse
Affiliation(s)
- Buqing Yi
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| | - Alexander H Dalpke
- Institute of Medical Microbiology and Virology, Medical Faculty, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
2
|
Zhong Q, Kobe B, Kappler U. Molybdenum Enzymes and How They Support Virulence in Pathogenic Bacteria. Front Microbiol 2020; 11:615860. [PMID: 33362753 PMCID: PMC7759655 DOI: 10.3389/fmicb.2020.615860] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022] Open
Abstract
Mononuclear molybdoenzymes are highly versatile catalysts that occur in organisms in all domains of life, where they mediate essential cellular functions such as energy generation and detoxification reactions. Molybdoenzymes are particularly abundant in bacteria, where over 50 distinct types of enzymes have been identified to date. In bacterial pathogens, all aspects of molybdoenzyme biology such as molybdate uptake, cofactor biosynthesis, and function of the enzymes themselves, have been shown to affect fitness in the host as well as virulence. Although current studies are mostly focused on a few key pathogens such as Escherichia coli, Salmonella enterica, Campylobacter jejuni, and Mycobacterium tuberculosis, some common themes for the function and adaptation of the molybdoenzymes to pathogen environmental niches are emerging. Firstly, for many of these enzymes, their role is in supporting bacterial energy generation; and the corresponding pathogen fitness and virulence defects appear to arise from a suboptimally poised metabolic network. Secondly, all substrates converted by virulence-relevant bacterial Mo enzymes belong to classes known to be generated in the host either during inflammation or as part of the host signaling network, with some enzyme groups showing adaptation to the increased conversion of such substrates. Lastly, a specific adaptation to bacterial in-host survival is an emerging link between the regulation of molybdoenzyme expression in bacterial pathogens and the presence of immune system-generated reactive oxygen species. The prevalence of molybdoenzymes in key bacterial pathogens including ESKAPE pathogens, paired with the mounting evidence of their central roles in bacterial fitness during infection, suggest that they could be important future drug targets.
Collapse
Affiliation(s)
- Qifeng Zhong
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Bostjan Kobe
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia.,Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD, Australia
| |
Collapse
|
3
|
Dhouib R, Pg Othman DSM, Essilfie AT, Hansbro PM, Hanson JO, McEwan AG, Kappler U. Maturation of molybdoenzymes and its influence on the pathogenesis of non-typeable Haemophilus influenzae. Front Microbiol 2015; 6:1219. [PMID: 26594204 PMCID: PMC4633490 DOI: 10.3389/fmicb.2015.01219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/19/2015] [Indexed: 01/08/2023] Open
Abstract
Mononuclear molybdenum enzymes of the dimethylsulfoxide (DMSO) reductase family occur exclusively in prokaryotes, and a loss of some these enzymes has been linked to a loss of bacterial virulence in several cases. The MobA protein catalyzes the final step in the synthesis of the molybdenum guanine dinucleotide (MGD) cofactor that is exclusive to enzymes of the DMSO reductase family. MobA has been proposed as a potential target for control of virulence since its inhibition would affect the activities of all molybdoenzymes dependent upon MGD. Here, we have studied the phenotype of a mobA mutant of the host-adapted human pathogen Haemophilus influenzae. H. influenzae causes and contributes to a variety of acute and chronic diseases of the respiratory tract, and several enzymes of the DMSO reductase family are conserved and highly expressed in this bacterium. The mobA mutation caused a significant decrease in the activities of all Mo-enzymes present, and also resulted in a small defect in anaerobic growth. However, we did not detect a defect in in vitro biofilm formation nor in invasion and adherence to human epithelial cells in tissue culture compared to the wild-type. In a murine in vivo model, the mobA mutant showed only a mild attenuation compared to the wild-type. In summary, our data show that MobA is essential for the activities of molybdenum enzymes, but does not appear to affect the fitness of H. influenzae. These results suggest that MobA is unlikely to be a useful target for antimicrobials, at least for the purpose of treating H. influenzae infections.
Collapse
Affiliation(s)
- Rabeb Dhouib
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Dk S M Pg Othman
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ama-Tawiah Essilfie
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Phil M Hansbro
- Centre for Asthma and Respiratory Diseases and Hunter Medical Research Institute, The University of Newcastle Newcastle, NSW, Australia
| | - Jeffrey O Hanson
- School of Biological Sciences, The University of Queensland St. Lucia, QLD, Australia
| | - Alastair G McEwan
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| | - Ulrike Kappler
- Centre for Metals in Biology, Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, The University of Queensland St. Lucia, QLD, Australia
| |
Collapse
|
4
|
Abstract
In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.
Collapse
|
5
|
Characterization of a Gene Conferring Red Fluorescence Isolated from an Environmental DNA Library Constructed from Soil Bacteria. Biosci Biotechnol Biochem 2014; 72:1908-14. [DOI: 10.1271/bbb.80161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Smith DJ, Anderson GJ, Bell SC, Reid DW. Elevated metal concentrations in the CF airway correlate with cellular injury and disease severity. J Cyst Fibros 2014; 13:289-95. [DOI: 10.1016/j.jcf.2013.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 12/01/2013] [Accepted: 12/01/2013] [Indexed: 12/11/2022]
|
7
|
Takeuchi K, Noda N, Someya N. Complete genome sequence of the biocontrol strain Pseudomonas protegens Cab57 discovered in Japan reveals strain-specific diversity of this species. PLoS One 2014; 9:e93683. [PMID: 24695768 PMCID: PMC3973561 DOI: 10.1371/journal.pone.0093683] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/05/2014] [Indexed: 01/07/2023] Open
Abstract
The biocontrol strain Pseudomonas sp. Cab57 was isolated from the rhizosphere of shepherd's purse growing in a field in Hokkaido by screening the antibiotic producers. The whole genome sequence of this strain was obtained by paired-end and whole-genome shotgun sequencing, and the gaps between the contigs were closed using gap-spanning PCR products. The P. sp. Cab57 genome is organized into a single circular chromosome with 6,827,892 bp, 63.3% G+C content, and 6,186 predicted protein-coding sequences. Based on 16S rRNA gene analysis and whole genome analysis, strain Cab57 was identified as P. protegens. As reported in P. protegens CHA0 and Pf-5, four gene clusters (phl, prn, plt, and hcn) encoding the typical antibiotic metabolites and the reported genes associated with Gac/Rsm signal transduction pathway of these strains are fully conserved in the Cab57 genome. Actually strain Cab57 exhibited typical Gac/Rsm activities and antibiotic production, and these activities were enhanced by knocking out the retS gene (for a sensor kinase acting as an antagonist of GacS). Two large segments (79 and 115 kb) lacking in the Cab57 genome, as compared with the Pf-5 genome, accounted for the majority of the difference (247 kb) between these genomes. One of these segments was the complete rhizoxin analog biosynthesis gene cluster (ca. 79 kb) and another one was the 115-kb mobile genomic island. A whole genome comparison of those relative strains revealed that each strain has unique gene clusters involved in metabolism such as nitrite/nitrate assimilation, which was identified in the Cab57 genome. These findings suggest that P. protegens is a ubiquitous bacterium that controls its biocontrol traits while building up strain-specific genomic repertoires for the biosynthesis of secondary metabolites and niche adaptation.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Naomi Noda
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, Japan
| | - Nobutaka Someya
- Hokkaido Agricultural Research Center, National Agriculture and Food Research Organization, Memuro-cho, Kasai-gun, Hokkaido, Japan
| |
Collapse
|
8
|
Structural data on the periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli: SAXS and preliminary X-ray crystallography analysis. Int J Mol Sci 2014; 15:2223-36. [PMID: 24492481 PMCID: PMC3958847 DOI: 10.3390/ijms15022223] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2013] [Revised: 01/21/2014] [Accepted: 01/22/2014] [Indexed: 11/17/2022] Open
Abstract
The periplasmic aldehyde oxidoreductase PaoABC from Escherichia coli is a molybdenum enzyme involved in detoxification of aldehydes in the cell. It is an example of an αβγ heterotrimeric enzyme of the xanthine oxidase family of enzymes which does not dimerize via its molybdenum cofactor binding domain. In order to structurally characterize PaoABC, X-ray crystallography and small angle X-ray scattering (SAXS) have been carried out. The protein crystallizes in the presence of 20% (w/v) polyethylene glycol 3350 using the hanging-drop vapour diffusion method. Although crystals were initially twinned, several experiments were done to overcome twinning and lowering the crystallization temperature (293 K to 277 K) was the solution to the problem. The non-twinned crystals used to solve the structure diffract X-rays to beyond 1.80 Å and belong to the C2 space group, with cell parameters a = 109.42 Å, b = 78.08 Å, c = 151.77 Å, β = 99.77°, and one molecule in the asymmetric unit. A molecular replacement solution was found for each subunit separately, using several proteins as search models. SAXS data of PaoABC were also collected showing that, in solution, the protein is also an αβγ heterotrimer.
Collapse
|
9
|
Barros MP, Hollnagel HC, Glavina AB, Soares CO, Ganini D, Dagenais-Bellefeuille S, Morse D, Colepicolo P. Molybdate:sulfate ratio affects redox metabolism and viability of the dinoflagellate Lingulodinium polyedrum. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 142-143:195-202. [PMID: 24036534 DOI: 10.1016/j.aquatox.2013.08.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 06/02/2023]
Abstract
Molybdenum is a transition metal used primarily (90% or more) as an additive to steel and corrosion-resistant alloys in metallurgical industries and its release into the environment is a growing problem. As a catalytic center of some redox enzymes, molybdenum is an essential element for inorganic nitrogen assimilation/fixation, phytohormone synthesis, and free radical metabolism in photosynthesizing species. In oceanic and estuarine waters, microalgae absorb molybdenum as the water-soluble molybdate anion (MoO4(2-)), although MoO4(2-) uptake is thought to compete with uptake of the much more abundant sulfate anion (SO4(2-), approximately 25 mM in seawater). Thus, those aspects of microalgal biology impacted by molybdenum would be better explained by considering both MoO4(2-) and SO4(2-) concentrations in the aquatic milieu. This work examines toxicological, physiological and redox imbalances in the dinoflagellate Lingulodinium polyedrum that have been induced by changes in the molybdate:sulfate ratios. We prepared cultures of Lingulodinium polyedrum grown in artificial seawater containing eight different MoO4(2-) concentrations (from 0 to 200 μM) and three different SO4(2-) concentrations (3.5 mM, 9.6 mM and 25 mM). We measured sulfur content in cells, the activities of the three major antioxidant enzymes (superoxide dismutase, catalase, and ascorbate peroxidase), indexes of oxidative modifications in proteins (carbonyl content) and lipids (thiobarbituric acid-reactive substances, TBARS), the activities of the molybdenum-dependent enzymes xanthine oxidase and nitrate reductase, expression of key protein components of dinoflagellate photosynthesis (peridinin-chlorophyll a protein and ribulose-1,5-biphosphate carboxylase/oxidase) and growth curves. We find evidence for Mo toxicity at relatively high [MoO4(2-)]:[SO4(2-)] ratios. We also find evidence for extensive redox adaptations at Mo levels well below lethal levels.
Collapse
Affiliation(s)
- M P Barros
- Postgraduate Program in Health Science (Environmental Chemistry), CBS, Universidade Cruzeiro do Sul, 08060070 São Paulo, SP, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Romeo A, Sonnleitner E, Sorger-Domenigg T, Nakano M, Eisenhaber B, Bläsi U. Transcriptional regulation of nitrate assimilation in Pseudomonas aeruginosa occurs via transcriptional antitermination within the nirBD–PA1779–cobA operon. Microbiology (Reading) 2012; 158:1543-1552. [DOI: 10.1099/mic.0.053850-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Alessandra Romeo
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Elisabeth Sonnleitner
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Theresa Sorger-Domenigg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Masayuki Nakano
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| | - Birgit Eisenhaber
- Bioinformatics Institute, Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, 138671 Singapore
| | - Udo Bläsi
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Dr. Bohrgasse 9/4, 1030 Vienna, Austria
| |
Collapse
|
11
|
Xue L, Li S, Zhang B, Shi X, Chang S. Counteractive action of nitric oxide on the decrease of nitrogenase activity induced by enhanced ultraviolet-B radiation in cyanobacterium. Curr Microbiol 2010; 62:1253-9. [PMID: 21188588 DOI: 10.1007/s00284-010-9850-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 11/30/2010] [Indexed: 10/18/2022]
Abstract
The experimental enhancement of UV-B radiation resulted in damage to chlorophyll-a in Spirulina platensis 794, and the degree of this damage was modified by chemical treatments. The addition of 0.5 mM sodium nitroprusside (SNP), a donor of nitric oxide (NO), to cultures of Spirulina platensis 794 could markedly alleviate the damage to chlorophyll-a caused by enhanced ultraviolet-B radiation. Exposure of N(2)-fixing cyanobacterium Spirulina platensis 794 to enhanced ultraviolet-B radiation resulted in an intensity-dependent inhibition of nitrogenase activity. In cultured cells that were treated with 0.5 mM SNP and enhanced UV-B for 6 h, nitrogenase activity increased by 47.3% compared with UV-B treated control cells. SNP apparently counteracted the decrease in nitrogenase activity caused by UV-B stress. NAC (a free radical scavenger) significantly increased nitrogenase activity, but PTIO (a nitric oxide scavenger) decreased nitrogenase activity in UV-B treated S. platensis 794. Thus, the free radical scavenger NAC and NO may counteract the effects of enhanced UV-B radiation. The activity of UV-B-inhibited nitrogenase did not recover upon transfer of exposed cells to fluorescent light, suggesting that the inhibition may be due to specific inactivation of the enzyme. By experimentally manipulating the inhibitors of photosystem-II activity, it was demonstrated that nitrogenase activity in cyanobacterium S. platensis 794 is limited by the amount of reductant and ATP. This result further confirmed that nitrogenase activity requires a continued and abundant supply of suitable reductant and ATP for conversion of N(2) to NH(3). The effects of UV-B treatment on nitratase activity were also examined, and enhanced UV-B radiation increased nitratase activity. In addition, enhanced UV-B in combination with SNP and NAC resulted in significant increases in the activity of nitratase.
Collapse
Affiliation(s)
- Lingui Xue
- School of Chemistry and Bioengineering, Lanzhou Jiaotong University, Lanzhou 730070, People's Republic of China.
| | | | | | | | | |
Collapse
|
12
|
Neumann M, Mittelstädt G, Iobbi-Nivol C, Saggu M, Lendzian F, Hildebrandt P, Leimkühler S. A periplasmic aldehyde oxidoreductase represents the first molybdopterin cytosine dinucleotide cofactor containing molybdo-flavoenzyme from Escherichia coli. FEBS J 2009; 276:2762-74. [PMID: 19368556 DOI: 10.1111/j.1742-4658.2009.07000.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Three DNA regions carrying genes encoding putative homologs of xanthine dehydrogenases were identified in Escherichia coli, named xdhABC, xdhD, and yagTSRQ. Here, we describe the purification and characterization of gene products of the yagTSRQ operon, a molybdenum-containing iron-sulfur flavoprotein from E. coli, which is located in the periplasm. The 135 kDa enzyme comprised a noncovalent (alpha beta gamma) heterotrimer with a large (78.1 kDa) molybdenum cofactor (Moco)-containing YagR subunit, a medium (33.9 kDa) FAD-containing YagS subunit, and a small (21.0 kDa) 2 x [2Fe2S]-containing YagT subunit. YagQ is not a subunit of the mature enzyme, and the protein is expected to be involved in Moco modification and insertion into YagTSR. Analysis of the form of Moco present in YagTSR revealed the presence of the molybdopterin cytosine dinucleotide cofactor. Two different [2Fe2S] clusters, typical for this class of enzyme, were identified by EPR. YagTSR represents the first example of a molybdopterin cytosine dinucleotide-containing protein in E. coli. Kinetic characterization of the enzyme revealed that YagTSR converts a broad spectrum of aldehydes, with a preference for aromatic aldehydes. Ferredoxin instead of NAD(+) or molecular oxygen was used as terminal electron acceptor. Complete growth inhibition of E. coli cells devoid of genes from the yagTSRQ operon was observed by the addition of cinnamaldehyde to a low-pH medium. This finding shows that YagTSR might have a role in the detoxification of aromatic aldehydes for E. coli under certain growth conditions.
Collapse
Affiliation(s)
- Meina Neumann
- Institute of Biochemistry and Biology, University of Potsdam, Germany
| | | | | | | | | | | | | |
Collapse
|
13
|
Proteomic, microarray, and signature-tagged mutagenesis analyses of anaerobic Pseudomonas aeruginosa at pH 6.5, likely representing chronic, late-stage cystic fibrosis airway conditions. J Bacteriol 2008; 190:2739-58. [PMID: 18203836 DOI: 10.1128/jb.01683-07] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Patients suffering from cystic fibrosis (CF) commonly harbor the important pathogen Pseudomonas aeruginosa in their airways. During chronic late-stage CF, P. aeruginosa is known to grow under reduced oxygen tension and is even capable of respiring anaerobically within the thickened airway mucus, at a pH of approximately 6.5. Therefore, proteins involved in anaerobic metabolism represent potentially important targets for therapeutic intervention. In this study, the clinically relevant "anaerobiome" or "proteogenome" of P. aeruginosa was assessed. First, two different proteomic approaches were used to identify proteins differentially expressed under anaerobic versus aerobic conditions. Microarray studies were also performed, and in general, the anaerobic transcriptome was in agreement with the proteomic results. However, we found that a major portion of the most upregulated genes in the presence of NO(3)(-) and NO(2)(-) are those encoding Pf1 bacteriophage. With anaerobic NO(2)(-), the most downregulated genes are those involved postglycolytically and include many tricarboxylic acid cycle genes and those involved in the electron transport chain, especially those encoding the NADH dehydrogenase I complex. Finally, a signature-tagged mutagenesis library of P. aeruginosa was constructed to further screen genes required for both NO(3)(-) and NO(2)(-) respiration. In addition to genes anticipated to play important roles in the anaerobiome (anr, dnr, nar, nir, and nuo), the cysG and dksA genes were found to be required for both anaerobic NO(3)(-) and NO(2)(-) respiration. This study represents a major step in unraveling the molecular machinery involved in anaerobic NO(3)(-) and NO(2)(-) respiration and offers clues as to how we might disrupt such pathways in P. aeruginosa to limit the growth of this important CF pathogen when it is either limited or completely restricted in its oxygen supply.
Collapse
|
14
|
Noriega CE, Sharma V, Rowe JJ. Artificial control of nitrate respiration through the lac promoter permits the assessment of oxygen-mediated posttranslational regulation of the nar operon in Pseudomonas aeruginosa. J Bacteriol 2007; 189:6501-5. [PMID: 17616601 PMCID: PMC1951927 DOI: 10.1128/jb.00491-07] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, oxygen and nitrate regulation of transcription and subsequent protein expression of the unique narK1K2GHJI respiratory operon of Pseudomonas aeruginosa were investigated. Under the control of PLAC, P. aeruginosa was able to transcribe nar and subsequently express methyl viologen-linked nitrate reductase activity under aerobic conditions without nitrate. Modulation of PLAC through the LacI repressor enabled us to assess both transcriptional and posttranslational regulation by oxygen during physiological whole-cell nitrate reduction.
Collapse
Affiliation(s)
- Chris E Noriega
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, USA
| | | | | |
Collapse
|
15
|
Kozmin SG, Schaaper RM. Molybdenum cofactor-dependent resistance to N-hydroxylated base analogs in Escherichia coli is independent of MobA function. Mutat Res 2007; 619:9-15. [PMID: 17349664 PMCID: PMC1934987 DOI: 10.1016/j.mrfmmm.2006.12.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2006] [Revised: 11/09/2006] [Accepted: 12/20/2006] [Indexed: 11/17/2022]
Abstract
Lack of molybdenum cofactor (MoCo) in Escherichia coli and related microorganisms was found to cause hypersensitivity to certain N-hydroxylated base analogs, such as HAP (6-N-hydroxylaminopurine). This observation has lead to a previous proposal that E. coli contains a molybdoenzyme capable of detoxifying such N-hydroxylated analogs. Here, we show that, unexpectedly, deletion of all known or putative molybdoenzymes in E. coli failed to reveal any base-analog sensitivity, suggesting that a novel type of MoCo-dependent activity is involved. Further, we establish that protection against the analogs does not require the common molybdopterin guanine-dinucleotide (MGD) form of the cofactor, but instead the guanosine monophosphate (GMP)-free version of MoCo (MPT) is sufficient.
Collapse
Affiliation(s)
- Stanislav G Kozmin
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709, USA
| | | |
Collapse
|
16
|
Sharma V, Noriega CE, Rowe JJ. Involvement of NarK1 and NarK2 proteins in transport of nitrate and nitrite in the denitrifying bacterium Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 2006; 72:695-701. [PMID: 16391109 PMCID: PMC1352271 DOI: 10.1128/aem.72.1.695-701.2006] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Two transmembrane proteins were tentatively classified as NarK1 and NarK2 in the Pseudomonas genome project and hypothesized to play an important physiological role in nitrate/nitrite transport in Pseudomonas aeruginosa. The narK1 and narK2 genes are located in a cluster along with the structural genes for the nitrate reductase complex. Our studies indicate that the transcription of all these genes is initiated from a single promoter and that the gene complex narK1K2GHJI constitutes an operon. Utilizing an isogenic narK1 mutant, a narK2 mutant, and a narK1K2 double mutant, we explored their effect on growth under denitrifying conditions. While the DeltanarK1::Gm mutant was only slightly affected in its ability to grow under denitrification conditions, both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants were found to be severely restricted in nitrate-dependent, anaerobic growth. All three strains demonstrated wild-type levels of nitrate reductase activity. Nitrate uptake by whole-cell suspensions demonstrated both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants to have very low yet different nitrate uptake rates, while the DeltanarK1::Gm mutant exhibited wild-type levels of nitrate uptake. Finally, Escherichia coli narK rescued both the DeltanarK2::Gm and DeltanarK1K2::Gm mutants with respect to anaerobic respiratory growth. Our results indicate that only the NarK2 protein is required as a nitrate/nitrite transporter by Pseudomonas aeruginosa under denitrifying conditions.
Collapse
Affiliation(s)
- Vandana Sharma
- Department of Biology, University of Dayton, 300 College Park, Dayton, OH 45469-2320, USA
| | | | | |
Collapse
|