Bennur T, Kumar AR, Zinjarde S, Javdekar V. Nocardiopsis species as potential sources of diverse and novel extracellular enzymes.
Appl Microbiol Biotechnol 2014;
98:9173-85. [PMID:
25269602 DOI:
10.1007/s00253-014-6111-y]
[Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 09/18/2014] [Accepted: 09/19/2014] [Indexed: 01/10/2023]
Abstract
Members of the genus Nocardiopsis are generally encountered in locations that are inherently extreme. They are present in frozen soils, desert sand, compost, saline or hypersaline habitats (marine systems, salterns and soils) and alkaline places (slag dumps, lake soils and sediments). In order to survive under these severe conditions, they produce novel and diverse enzymes that allow them to utilize the available nutrients and to thrive. The members of this genus are multifaceted and release an assortment of extracellular hydrolytic enzymes. They produce enzymes that are cold-adapted (α-amylases), thermotolerant (α-amylases and xylanases), thermoalkalotolerant (cellulases, β-1,3-glucanases), alkali-tolerant thermostable (inulinases), acid-stable (keratinase) and alkalophilic (serine proteases). Some of the enzymes derived from Nocardiopsis species act on insoluble polymers such as glucans (pachyman and curdlan), keratin (feathers and prion proteins) and polyhydroxyalkanoates. Extreme tolerance exhibited by proteases has been attributed to the presence of some amino acids (Asn and Pro) in loop structures, relocation of multiple salt bridges to outer regions of the protein or the presence of a distinct polyproline II helix. The range of novel enzymes is projected to increase in the forthcoming years, as new isolates are being continually reported, and the development of processes involving such enzymes is envisaged in the future.
Collapse