1
|
Xia X. Multiple regulatory mechanisms for pH homeostasis in the gastric pathogen, Helicobacter pylori. ADVANCES IN GENETICS 2022; 109:39-69. [PMID: 36334916 DOI: 10.1016/bs.adgen.2022.07.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Acid-resistance in gastric pathogen Helicobacter pylori requires the coordination of four essential processes to regulate urease activity. Firstly, urease expression above a base level needs to be finely tuned at different ambient pH. Secondly, as nickel is needed to activate urease, nickel homeostasis needs to be maintained by proteins that import and export nickel ions, and sequester, store and release nickel when needed. Thirdly, urease accessary proteins that activate urease activity by nickel insertion need to be expressed. Finally, a reliable source of urea needs to be maintained by both intrinsic and extrinsic sources of urea. Two-component systems (arsRS and flgRS), as well as a nickel response regulator (NikR), sense the change in pH and act on a variety of genes to accomplish the function of acid resistance without causing cellular overalkalization and nickel toxicity. Nickel storage proteins also feature built-in switches to store nickel at neutral pH and release nickel at low pH. This review summarizes the current status of H. pylori research and highlights a number of hypotheses that need to be tested.
Collapse
Affiliation(s)
- Xuhua Xia
- Department of Biology, University of Ottawa, Ottawa, Canada; Ottawa Institute of Systems Biology, Ottawa, Canada.
| |
Collapse
|
2
|
Xiong Y, Yang Z, Zhang J, Li J, Chen P, Xiang Y. Panning using a phage-displayed random peptide library to identify peptides that antagonize the Helicobacter pylori ArsS acid-sensing domain. Microb Pathog 2019; 135:103614. [PMID: 31255726 DOI: 10.1016/j.micpath.2019.103614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/27/2019] [Accepted: 06/26/2019] [Indexed: 01/01/2023]
Abstract
Helicobacter pylori is an important etiological factor involved in chronic gastritis, peptic ulcer, and gastric cancer. There are currently no optimal preventive or therapeutic interventions for H. pylori infection. H. pylori survives in the stomach by sensing and adapting to the highly acidic environment by using the two-component signal transduction system that contains the most widely known gastric acid receptor, ArsRS (which is composed of ArsS and ArsR). This study aimed to identify peptides that antagonize the acid-sensing domain of H. pylori ArsS. These peptides could be used to block the acid-sensing signal and thereby hinder H. pylori adaption to acidic environments to prevent its survival. Using proSite, the functional domains (including the N-terminal acid-sensing domain) of H. pylori J99 ArsS were predicted. The purified recombinant ArsS N-terminal acid-sensing protein (P-ArsS-A) was used as the target in a panning protocol in which peptides from the Ph.D.-7 Phage Display Peptide Library that could bind to P-ArsS-A were identified. As a result, eight phage clones that could specifically bind to P-ArsS-A were obtained and five amino acid sequences were identified, including P03 (MMSYPKH) and P06 (LTPMPNW). An in vitro minimum inhibitory concentration (MIC) evaluation showed that P03 and P06 significantly inhibited the growth of H. pylori J99. The MIC of P03 was 8 μM, and the MIC of P06 was >16 μM, indicating that P03 is a stronger inhibitor compared to P06. This was confirmed by colony counting on blood agar plates after P03 and P06 administration. Using homology modeling and molecular docking analysis, it was shown that P03 and P06 could bind to the ArsS N-terminal domain, and there were four shared binding sites: TYR25, ASN39, ARG73, and GLU74. Additionally, one hydrogen bond was found between P03 and ArsS, which is more cohesive than other forms of bonding (van der Waals force, other non-covalent bonds).
Collapse
Affiliation(s)
- Yuxia Xiong
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Zhibang Yang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jin Zhang
- Department of Pathogenic Biology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China.
| | - Jinyang Li
- College of Clinical Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Pu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yu Xiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
3
|
De la Cruz MA, Ares MA, von Bargen K, Panunzi LG, Martínez-Cruz J, Valdez-Salazar HA, Jiménez-Galicia C, Torres J. Gene Expression Profiling of Transcription Factors of Helicobacter pylori under Different Environmental Conditions. Front Microbiol 2017; 8:615. [PMID: 28443084 PMCID: PMC5385360 DOI: 10.3389/fmicb.2017.00615] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacterium that colonizes the human gastric mucosa and causes peptic ulcers and gastric carcinoma. H. pylori strain 26695 has a small genome (1.67 Mb), which codes for few known transcriptional regulators that control bacterial metabolism and virulence. We analyzed by qRT-PCR the expression of 16 transcriptional regulators in H. pylori 26695, including the three sigma factors under different environmental conditions. When bacteria were exposed to acidic pH, urea, nickel, or iron, the sigma factors were differentially expressed with a particularly strong induction of fliA. The regulatory genes hrcA, hup, and crdR were highly induced in the presence of urea, nickel, and iron. In terms of biofilm formation fliA, flgR, hp1021, fur, nikR, and crdR were induced in sessile bacteria. Transcriptional expression levels of rpoD, flgR, hspR, hp1043, and cheY were increased in contact with AGS epithelial cells. Kanamycin, chloramphenicol, and tetracycline increased or decreased expression of regulatory genes, showing that these antibiotics affect the transcription of H. pylori. Our data indicate that environmental cues which may be present in the human stomach modulate H. pylori transcription.
Collapse
Affiliation(s)
- Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | | | - Leonardo G Panunzi
- CNRS UMR7280, Inserm, U1104, Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2Marseille, France
| | - Jessica Martínez-Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Hilda A Valdez-Salazar
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - César Jiménez-Galicia
- Laboratorio Clínico, Unidad Médica de Alta Especialidad, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| | - Javier Torres
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatria, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro SocialMexico City, Mexico
| |
Collapse
|
4
|
Keilberg D, Ottemann KM. HowHelicobacter pylorisenses, targets and interacts with the gastric epithelium. Environ Microbiol 2016; 18:791-806. [DOI: 10.1111/1462-2920.13222] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 01/05/2016] [Accepted: 01/10/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Daniela Keilberg
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| | - Karen M. Ottemann
- Department of Microbiology and Environmental Toxicology; University of California Santa Cruz; 1156 High Street METX Santa Cruz CA 95064 USA
| |
Collapse
|
5
|
Hallinger DR, Romero-Gallo J, Peek RM, Forsyth MH. Polymorphisms of the acid sensing histidine kinase gene arsS in Helicobacter pylori populations from anatomically distinct gastric sites. Microb Pathog 2012; 53:227-33. [PMID: 22940419 DOI: 10.1016/j.micpath.2012.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 08/14/2012] [Indexed: 12/24/2022]
Abstract
Phase variation is frequently utilized by bacterial species to affect gene expression such that phenotypic variants are maintained within populations, ensuring survival as environmental or host conditions change. Unusual among Helicobacter pylori phase variable or contingency genes is arsS, encoding a sensory histidine kinase involved in the acid acclimation of the organism. The presence of a 3' homopolymeric cytosine tract of variable length in arsS among Helicobacter pylori strains allows for the expression of various functional ArsS isoforms, differing in carboxy-terminal protein domains. In this study, we analyzed this 3'arsS region via amplified fragment length polymorphism (AFLP) and sequencing analyses for H. pylori populations from 3 different gastric sites of 12 patients. Our data indicate the presence of multiple arsS alleles within each population of H. pylori derived from the gastric antrum, cardia, or corpus of these patients. We also show that H. pylori, derived from the same anatomical site and patient, are predicted to express multiple ArsS isoforms in each population investigated. Furthermore, we identify a polymorphic deletion within arsS that generates another alternate ArsS C-terminal end. These findings suggest that four C-terminal variations of ArsS adds to the complexity of the ArsRS acid adaptation mechanism as a whole and may influence the ability of H. pylori to persist in the gastric niche for decades.
Collapse
Affiliation(s)
- Daniel R Hallinger
- Department of Biology, The College of William and Mary, Integrated Science Center 3051, Williamsburg, VA 23185, USA
| | | | | | | |
Collapse
|
6
|
Role of the Helicobacter pylori sensor kinase ArsS in protein trafficking and acid acclimation. J Bacteriol 2012; 194:5545-51. [PMID: 22865848 DOI: 10.1128/jb.01263-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori survives and grows at low pHs via acid acclimation mechanisms that enable periplasmic pH homeostasis. Important components include a cytoplasmic urease; a pH-gated urea channel, UreI; and periplasmic α-carbonic anhydrase. To allow the rapid adjustment of periplasmic pH, acid acclimation components are recruited to the inner membrane in acid. The ArsRS two-component system, in an acid-responsive manner, controls the transcription of the urease gene cluster and α-carbonic anhydrase. The aim of this study is to determine the role of ArsS in protein trafficking as a component of acid acclimation. H. pylori wild-type and ΔarsS bacteria were incubated at acidic and neutral pHs. Intact bacteria, purified membranes, and total protein were analyzed by Western blotting and urease activity measurements. The total urease activity level was decreased in the ΔarsS strain, but the acid activation of UreI was unaffected. A 30-min acid exposure increased the level and activity of urease proteins at the membrane in the wild type but not in the ΔarsS strain. The urease levels and activity of the ΔarsS strain after a 90-min acid exposure were similar to those of the wild type. ArsS, in addition to its role in urease gene transcription, is also involved in the recruitment of urease proteins to the inner membrane to augment acid acclimation during acute acid exposure. Urease membrane recruitment following prolonged acid exposure in the absence of ArsS was similar to that of the wild type, suggesting a compensatory mechanism, possibly regulated by FlgS, underscoring the importance of urease membrane recruitment and activation in periplasmic pH homeostasis.
Collapse
|
7
|
Danielli A, Scarlato V. Regulatory circuits in Helicobacter pylori : network motifs and regulators involved in metal-dependent responses. FEMS Microbiol Rev 2010; 34:738-52. [PMID: 20579104 DOI: 10.1111/j.1574-6976.2010.00233.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The ability of Helicobacter pylori, one of the most successful human bacterial pathogens, to colonize the acidic gastric niche persistently, depends on the proper homeostasis of intracellular metal ions, needed as cofactors of essential metallo-proteins involved in acid acclimation, respiration and detoxification. This fundamental task is controlled at the transcriptional level mainly by the regulators Fur and NikR, involved in iron homeostasis and nickel response, respectively. Herein, we review the molecular mechanisms that underlie the activity of these key pleiotropic regulators. In addition, we will focus on their involvement in the transcriptional regulatory network of the bacterium, pinpointing a surprising complexity of network motifs that interconnects them and their gene targets. These motifs appear to confer versatile dynamics of metal-dependent responses by extensive horizontal connections between the regulators and feedback control of metal-cofactor availability.
Collapse
|
8
|
Abstract
Helicobacter pylori infection causes chronic active gastritis, ulcer disease, and gastric cancer. Current eradication regimens use a proton pump inhibitor (PPI) and two antibiotics. Triple therapy now has a success rate less than 80%, below the cutoff for efficacious eradication. Antibiotic resistance, inconsistent acid control by PPIs, and poor patient compliance contribute to the failure rate. H. pylori is a neutralophile that has developed special acid acclimation mechanisms to colonize its acidic gastric niche. Identifying the components of these mechanisms will provide novel bactericidal drug targets. Alternatively, better 24-hour acid control would increase the efficacy of antibiotics, leading to dual therapy with improved PPIs and amoxicillin. Studies of acid acclimation by H. pylori have identified several potential eradication targets including UreI, alpha-carbonic anhydrase, and a two-component system. Continuing improvement of PPIs has led to the development of at least three candidate drugs with improved 24-hour acid control.
Collapse
|
9
|
Duckworth MJ, Okoli AS, Mendz GL. Novel Helicobacter pylori therapeutic targets: the unusual suspects. Expert Rev Anti Infect Ther 2009; 7:835-67. [PMID: 19735225 DOI: 10.1586/eri.09.61] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding the current status of the discovery and development of anti-Helicobacter therapies requires an overview of the searches for therapeutic targets performed to date. A summary is given of the very substantial body of work conducted in the quest to find Helicobacter pylori genes that could be suitable candidates for therapeutic intervention. The products of most of these genes perform metabolic functions, and others have roles in growth, cell motility and colonization. The genes identified as potential targets have been organized into three categories according to their degree of characterization. A short description and evaluation is provided of the main candidates in each category. Investigations of potential therapeutic targets have generated a wealth of information about the physiology and genetics of H. pylori, and its interactions with the host, but have yielded little by way of new therapies.
Collapse
Affiliation(s)
- Megan J Duckworth
- School of Medicine, Sydney, The University of Notre Dame Australia, 160 Oxford Street, Darlinghurst, NSW 2010, Australia.
| | | | | |
Collapse
|
10
|
Müller S, Götz M, Beier D. Histidine residue 94 is involved in pH sensing by histidine kinase ArsS of Helicobacter pylori. PLoS One 2009; 4:e6930. [PMID: 19759826 PMCID: PMC2736386 DOI: 10.1371/journal.pone.0006930] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Accepted: 08/12/2009] [Indexed: 11/28/2022] Open
Abstract
Background The ArsRS two-component system is the master regulator of acid adaptation in the human gastric pathogen Helicobacter pylori. Low pH is supposed to trigger the autophosphorylation of the histidine kinase ArsS and the subsequent transfer of the phosphoryl group to its cognate response regulator ArsR which then acts as an activator or repressor of pH-responsive genes. Orthologs of the ArsRS two-component system are also present in H. pylori's close relatives H. hepaticus, Campylobacter jejuni and Wolinella succinogenes which are non-gastric colonizers. Methodology/Principal Findings In order to investigate the mechanism of acid perception by ArsS, derivatives of H. pylori 26695 expressing ArsS proteins with substitutions of the histidine residues present in its periplasmic input domain were constructed. Analysis of pH-responsive transcription of selected ArsRS target genes in these mutants revealed that H94 is relevant for pH sensing, however, our data indicate that protonatable amino acids other than histidine contribute substantially to acid perception by ArsS. By the construction and analysis of H. pylori mutants carrying arsS allels from the related ε-proteobacteria we demonstrate that WS1818 of W. succinogenes efficiently responds to acidic pH. Conclusions/Significance We show that H94 in the input domain of ArsS is crucial for acid perception in H. pylori 26695. In addition our data suggest that ArsS is able to adopt different conformations depending on the degree of protonation of acidic amino acids in the input domain. This might result in different activation states of the histidine kinase allowing a gradual transcriptional response to low pH conditions. Although retaining considerable similarity to ArsS the orthologous proteins of H. hepaticus and C. jejuni may have evolved to sensors of a different environmental stimulus in accordance with the non gastric habitat of these bacteria.
Collapse
Affiliation(s)
- Stefanie Müller
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Monika Götz
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
| | - Dagmar Beier
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Mikrobiologie, Universität Würzburg, Am Hubland, Würzburg, Germany
- * E-mail:
| |
Collapse
|
11
|
Carpenter BM, Gancz H, Gonzalez-Nieves RP, West AL, Whitmire JM, Michel SLJ, Merrell DS. A single nucleotide change affects fur-dependent regulation of sodB in H. pylori. PLoS One 2009; 4:e5369. [PMID: 19399190 PMCID: PMC2671405 DOI: 10.1371/journal.pone.0005369] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 03/27/2009] [Indexed: 11/18/2022] Open
Abstract
Helicobacter pylori is a significant human pathogen that has adapted to survive the many stresses found within the gastric environment. Superoxide Dismutase (SodB) is an important factor that helps H. pylori combat oxidative stress. sodB was previously shown to be repressed by the Ferric Uptake Regulator (Fur) in the absence of iron (apo-Fur regulation) [1]. Herein, we show that apo regulation is not fully conserved among all strains of H. pylori. apo-Fur dependent changes in sodB expression are not observed under iron deplete conditions in H. pylori strains G27, HPAG1, or J99. However, Fur regulation of pfr and amiE occurs as expected. Comparative analysis of the Fur coding sequence between G27 and 26695 revealed a single amino acid difference, which was not responsible for the altered sodB regulation. Comparison of the sodB promoters from G27 and 26695 also revealed a single nucleotide difference within the predicted Fur binding site. Alteration of this nucleotide in G27 to that of 26695 restored apo-Fur dependent sodB regulation, indicating that a single base difference is at least partially responsible for the difference in sodB regulation observed among these H. pylori strains. Fur binding studies revealed that alteration of this single nucleotide in G27 increased the affinity of Fur for the sodB promoter. Additionally, the single base change in G27 enabled the sodB promoter to bind to apo-Fur with affinities similar to the 26695 sodB promoter. Taken together these data indicate that this nucleotide residue is important for direct apo-Fur binding to the sodB promoter.
Collapse
Affiliation(s)
- Beth M. Carpenter
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Hanan Gancz
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Reyda P. Gonzalez-Nieves
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Abby L. West
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - Jeannette M. Whitmire
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, Maryland, United States of America
| | - D. Scott Merrell
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
12
|
Loh JT, Torres VJ, Algood HMS, McClain MS, Cover TL. Helicobacter pylori HopQ outer membrane protein attenuates bacterial adherence to gastric epithelial cells. FEMS Microbiol Lett 2009; 289:53-8. [PMID: 19065710 DOI: 10.1111/j.1574-6968.2008.01368.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori genomes contain about 30 hop genes that encode outer membrane proteins. Helicobacter pylori hopQ alleles exhibit a high level of genetic diversity, and two families of hopQ alleles have been described. Type I hopQ alleles are found more commonly in cag-positive H. pylori strains from patients with peptic ulcer disease than in cag-negative strains from patients without ulcer disease. In this study, we mutated hopQ in four H. pylori strains that each contained a type I hopQ allele, and then analyzed interactions of the wild-type and hopQ mutant strains with AGS cells. In comparison with the wild-type strains, two of the hopQ mutant strains exhibited increased adherence to AGS cells and two hopQ mutants did not exhibit any detectable differences in adherence. Higher levels of tyrosine-phosphorylated CagA were detected when AGS cells were cocultured with a hyperadherent hopQ mutant strain than when cocultured with the corresponding wild-type strain. These data indicate that in some strains of H. pylori, the HopQ protein can attenuate bacterial adherence to gastric epithelial cells.
Collapse
Affiliation(s)
- John T Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | | | | | | | | |
Collapse
|
13
|
The pH-responsive regulon of HP0244 (FlgS), the cytoplasmic histidine kinase of Helicobacter pylori. J Bacteriol 2008; 191:449-60. [PMID: 18978046 DOI: 10.1128/jb.01219-08] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori colonizes the acidic gastric environment, in contrast to all other neutralophiles, whose acid resistance and tolerance responses allow only gastric transit. This acid adaptation is dependent on regulation of gene expression in response to pH changes in the periplasm and cytoplasm. The cytoplasmic histidine kinase, HP0244, which until now was thought only to regulate flagellar gene expression via its cognate response regulator, HP0703, was found to generate a response to declining medium pH. Although not required for survival at pH 4.5, HP0244 is required for survival at pH 2.5 with 10 mM urea after 30 min. Transcriptional profiling of a HP0244 deletion mutant grown at pH 7.4 confirmed the contribution of HP0244 to sigma(54) activation via HP0703 to coordinate flagellar biosynthesis by a pH-independent regulon that includes 14 flagellar genes. Microarray analysis of cells grown at pH 4.5 without urea revealed an additional 22 genes, including 4 acid acclimation genes (ureA, ureB, ureI, and amiE) that are positively regulated by HP0244. Additionally, 86 differentially expressed genes, including 3 acid acclimation genes (ureF, rocF [arginase], and ansB [asparaginase]), were found in cells grown at pH 2.5 with 30 mM urea. Hence, HP0244 has, in addition to the pH-independent flagellar regulon, a pH-dependent regulon, which allows adaptation to a wider range of environmental acid conditions. An acid survival study using an HP0703 mutant and an electrophoretic mobility shift assay with in vitro-phosphorylated HP0703 showed that HP0703 does not contribute to acid survival and does not bind to the promoter regions of several genes in the HP0244 pH-dependent regulon, suggesting that there is a pathway outside the HP0703 regulon which transduces the acid-responsive signal sensed by HP0244.
Collapse
|
14
|
Development of inducible systems to engineer conditional mutants of essential genes of Helicobacter pylori. Appl Environ Microbiol 2008; 74:2095-102. [PMID: 18245237 DOI: 10.1128/aem.01348-07] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The Escherichia coli-Helicobacter pylori shuttle vector pHeL2 was modified to introduce the inducible LacI(q)-pTac system of E. coli, in which the promoters were engineered to be under the control of H. pylori RNA polymerase. The amiE gene promoter of H. pylori was taken to constitutively express the LacI(q) repressor. Expression of the reporter gene lacZ was driven by either pTac (pILL2150) or a modified version of the ureI gene promoter in which one or two LacI-binding sites and/or mutated nucleotides between the ribosomal binding site and the ATG start codon (pILL2153 and pILL2157) were introduced. Promoter activity was evaluated by measuring beta-galactosidase activity. pILL2150 is a tightly regulated expression system suitable for the analysis of genes with low-level expression, while pILL2157 is well adapted for the controlled expression of genes encoding recombinant proteins in H. pylori. To exemplify the usefulness of these tools, we constructed conditional mutants of the putative essential pbp1 and ftsI genes encoding penicillin-binding proteins 1 and 3 of H. pylori, respectively. Both genes were cloned into pILL2150 and introduced in the parental H. pylori strain N6. The chromosomally harbored pbp1 and ftsI genes were then inactivated by replacing them with a nonpolar kanamycin cassette. Inactivation was strictly dependent upon addition of isopropyl-beta-d-thiogalactopyranoside. Hence, we were able to construct the first conditional mutants of H. pylori. Finally, we demonstrated that following in vitro methylation of the recombinant plasmids, these could be introduced into a large variety of H. pylori isolates with different genetic backgrounds.
Collapse
|
15
|
Josenhans C, Beier D, Linz B, Meyer TF, Suerbaum S. Pathogenomics of helicobacter. Int J Med Microbiol 2007; 297:589-600. [PMID: 17416549 DOI: 10.1016/j.ijmm.2007.02.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Revised: 02/05/2007] [Accepted: 02/05/2007] [Indexed: 02/07/2023] Open
Abstract
The pathogenic bacterium Helicobacter pylori infects half of the human population and is one of the genetically most diverse bacterial species known. H. pylori was one of the first bacterial species whose genome was sequenced in 1997, and the first species for which two complete sequences from independent isolates were available for within-species comparisons. For almost 10 years, genomic and post-genomic analysis has contributed enormously to our understanding of the pathogenesis of H. pylori infection. This review summarizes the available information, emphasizing work performed in the framework of the PathoGenoMik funding initiative (2001-2006) of the German Ministry of Education and Research.
Collapse
Affiliation(s)
- Christine Josenhans
- Institute of Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Carl-Neuberg-Street 1, D-30625 Hannover, Germany
| | | | | | | | | |
Collapse
|
16
|
Joseph B, Beier D. Global analysis of two-component gene regulation in H. pylori by mutation analysis and transcriptional profiling. Methods Enzymol 2007; 423:514-30. [PMID: 17609149 DOI: 10.1016/s0076-6879(07)23025-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The human gastric pathogen Helicobacter pylori was among the first microorganisms whose genome sequence was determined. It has a remarkably small repertoire of two-component regulators comprising three histidine kinases and five response regulators involved in transcriptional regulators as well as a bifunctional histidine kinase and four response regulators which build up the chemotaxis regulatory system. However, the two-component systems of H. pylori proved to play an important role for both in vitro growth of the organism and its ability to colonize its host. Here, we describe the experimental approaches applied to characterize the two-component systems of H. pylori, which were mostly based on the availability of the H. pylori genome sequence. These approaches comprise conventional techniques including mutation analysis as well as sophisticated methods like whole genome transcriptional profiling.
Collapse
Affiliation(s)
- Biju Joseph
- Institut für Hygiene und Mikrobiologie, Universität Würzburg, Würzburg, Germany
| | | |
Collapse
|