1
|
Kavya B, King B, Rigsbee AS, Yang JG, Sprinkles W, Patel VM, McDonald AA, Amburn SK, Champlin FR. Influence of outer membrane permeabilization on intrinsic resistance to the hydrophobic biocide triclosan in opportunistic Serratia species. Heliyon 2023; 9:e15385. [PMID: 37101640 PMCID: PMC10123185 DOI: 10.1016/j.heliyon.2023.e15385] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 04/28/2023] Open
Abstract
Triclosan is a hydrophobic antimicrobial agent commonly employed in health care settings. While it exhibits broad-spectrum antibacterial properties, the gram-negative nosocomial opportunists Pseudomonas aeruginosa and Serratia marcescens are atypically refractory. Intrinsic resistance to triclosan in P. aeruginosa is largely due to its outer membrane impermeability properties for hydrophobic and bulky substances. The present study was undertaken to determine the relationship between triclosan and the outer cell envelopes of thirteen strains of ten Serratia species reported to be opportunistic pathogens in humans. General intrinsic resistance to hydrophobic and other outer membrane impermeant compounds was assessed using cultural selection, disk agar diffusion, and macrobroth dilution bioassays. Uptake of the hydrophobic fluorescent probe 1-N-phenylnapthylamine was assessed in four disparate strains of S. marcescens. Batch culture kinetics in the presence of combinations of triclosan and outer membrane permeabilizer compound 48/80 allowed analysis of outer membrane involvement in intrinsic resistance. Aggregate results revealed that individual species ranged in response to hydrophobic and bulky molecules from generally refractory to extremely susceptible. Moreover, susceptivity to triclosan sensitization by chemical disruption of outer membrane exclusionary properties differed markedly among species which exhibited intrinsic resistance to triclosan. These data suggest that disparate opportunistic pathogens within the genus Serratia differ phenotypically regarding the degree to which outer membrane exclusion contributes to intrinsic resistance for impermeant molecules in general, and triclosan specifically. Ancillary resistance mechanisms appear to contribute in some species and may involve constitutive multi-drug efflux systems. Importance A paucity of knowledge exists regarding the cellular and molecular mechanisms by which opportunistically pathogenic members of the genus Serratia are able to infect immunocompromised and otherwise susceptible individuals, and then evade chemotherapy. This is especially true for species other than Serratia marcescens and Serratia liquefaciens, although much remains to be learned with regard to the nature of key virulence factors and infection mechanisms which allow for the typically nosocomial acquisition of even these species. The research described in the present study will provide a better understanding of the contribution of outer cell envelope permeability properties to the pathogenicity of these opportunistic species in an ever-increasing susceptible patient population. It is our hope that greater knowledge of the basic biology of these organisms will contribute to the mitigation of suffering they cause in patients with underlying diseases.
Collapse
Affiliation(s)
- Boyina Kavya
- Department of Biochemistry and Molecular Biology, College of Agriculture, Oklahoma State University, Stillwater, OK, USA
| | - Blake King
- Department of Natural Sciences, College of Science and Health Professions, Northeastern State University, Broken Arrow, OK, USA
| | - Abby S. Rigsbee
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Jennifer G. Yang
- Biotechnology Department, Tulsa Community College, Tulsa, OK, USA
| | - Wilson Sprinkles
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | | | - Allison A. McDonald
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Sue Katz Amburn
- Biology Department, Rogers State University, Claremore, OK, USA
| | - Franklin R. Champlin
- Department of Biochemistry and Microbiology, School of Biomedical Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
- Corresponding author.
| |
Collapse
|
2
|
Chambers LE, Chang M, Boyina K, Williams A, Dye R, Miller RV, DeGear MA, Assefa S, Köhler GA, Champlin FR. Disparate outer membrane exclusionary properties underlie intrinsic resistance to hydrophobic substances in Pseudomonas spp. isolated from surface waters under triclosan selection. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:257-268. [PMID: 33411598 DOI: 10.1080/10934529.2020.1868822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/14/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Representative members of surface water microbiota were obtained from three unrelated municipal sites in Oklahoma by direct plating under selection by the hydrophobic biocide triclosan. Multiple methods were employed to determine if intrinsic triclosan resistance reflected resistance to hydrophobic molecules by virtue of outer membrane impermeability. While all but one organism isolated in the absence of triclosan were able to initiate growth on MacConkey agar, only one was able to initiate significant growth with triclosan present. In contrast, all bacteria selected with triclosan were identified as Pseudomonas spp. using 16S RNA gene sequencing and exhibited growth comparable to Pseudomonas aeruginosa controls in the presence of hydrophobic antibacterial agents to include triclosan. Two representative bacteria isolated in the absence of triclosan allowed for greater outer membrane association with the fluorescent hydrophobic probe 1-N-phenylnapthylamine than did two triclosan-resistant isolates. Compound 48/80 disruption of outer membrane impermeability properties for hydrophobic substances either partially or fully sensitized nine of twelve intrinsically resistant isolates to triclosan. These data suggest that outer membrane exclusion underlies intrinsic resistance to triclosan in some, but not all Pseudomonas spp. isolated by selection from municipal surface waters and implicates the involvement of concomitant triclosan resistance mechanisms.
Collapse
Affiliation(s)
- Lauren E Chambers
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Mang Chang
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Kavya Boyina
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Ashton Williams
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Rebecca Dye
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Robert V Miller
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Michelle A DeGear
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Senait Assefa
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Gerwald A Köhler
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| | - Franklin R Champlin
- Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, USA
| |
Collapse
|
3
|
Abstract
Triclosan and chloroxylenol are broad-spectrum biocides used extensively in healthcare and consumer products. They have been suggested to perturb the structure of bacterial membranes, but studies so far have not considered that most bacterial membranes contain large amounts of branched-chain lipids. Here, molecular dynamics simulation is used to examine the effect of the two biocides on membranes consisting of lipids with methyl-branched chains, cyclopropanated chains, and nonbranched chains. It is shown that triclosan and chloroxylenol induced a phase transition in membranes from a liquid-crystalline to a liquid-ordered phase irrespective of the presence and nature of branching groups. At high concentration, chloroxylenol promoted chain interdigitation. Our results suggest that triclosan and chloroxylenol decrease the degree of fluidity of membranes and that this effect is more pronounced in bacterial membranes. As a result, their biocidal activity could be associated with a change in the function of membrane proteins.
Collapse
Affiliation(s)
- David Poger
- School of Chemistry & Molecular Biosciences , The University of Queensland , Brisbane QLD 4072 , Australia
| | - Alan E Mark
- School of Chemistry & Molecular Biosciences , The University of Queensland , Brisbane QLD 4072 , Australia
| |
Collapse
|
4
|
Cell envelope phospholipid composition of Burkholderia multivorans. Curr Microbiol 2014; 69:388-93. [PMID: 24810292 DOI: 10.1007/s00284-014-0599-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 03/14/2014] [Indexed: 10/25/2022]
Abstract
Burkholderia multivorans causes opportunistic pulmonary infections in cystic fibrosis and immunocompromised patients. The purpose of the present study was to determine the nature of the phospholipids and their fatty acid constituents comprising the cell envelope membranes of strains isolated from three disparate sources. A conventional method for obtaining the readily extractable lipids fraction from bacteria was employed to obtain membrane lipids for thin-layer chromatographic and gas chromatography-mass spectrophotometric analyses. Major fatty acid components of the B. multivorans readily extractable lipid fractions included C(16:0) (palmitic acid), C(16:1) (palmitoleic acid), and C(18:1) (oleic acid), while C(14:0) (myristic acid), ΔC(17:0) (methylene hexadecanoic acid), C(18:0) (stearic acid), and ΔC(19:0) (methylene octadecanoic acid) were present in lesser amounts. Fatty acid composition differed quantitatively among strains with regard to C(16:0), C(16:1), ΔC(17:0), C(18:1), and ΔC(19:0) with the unsaturated:saturated fatty acid ratios being significantly less in a cystic fibrosis type strain than either environmental or chronic granulomatous disease strains. Phospholipids identified in all B. multivorans strains included lyso-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol in similar ratios. These data support the conclusion that the cell envelope phospholipid profiles of disparate B. multivorans strains are similar, while their respective fatty acyl substituent profiles differ quantitatively under identical cultivation conditions.
Collapse
|