1
|
Radzlin N, Yaakop AS, Goh KM, Liew KJ, Zakaria II, Kahar UM. Genome Analysis of Celeribacter sp. PS-C1 Isolated from Sekinchan Beach in Selangor, Malaysia, Reveals Its β-Glucosidase and Licheninase Activities. Microorganisms 2022; 10:410. [PMID: 35208867 PMCID: PMC8874975 DOI: 10.3390/microorganisms10020410] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
A halophilic marine bacterial strain, PS-C1, was isolated from Sekinchan beach in Selangor, Malaysia. The 16S rRNA gene sequence analysis indicated that strain PS-C1 was associated with the genus Celeribacter. To date, there have been no reports on enzymes from the genus Celeribacter. The present study reports on the cellular features of Celeribacter sp. PS-C1, its annotated genome sequence, and comparative genome analyses of Celeribacter glycoside hydrolase (GH) enzymes. The genome of strain PS-C1 has a size of 3.87 Mbp and a G+C content of 59.10%, and contains 3739 protein-coding genes. Detailed analysis using the Carbohydrate-Active enZYmes (CAZy) database revealed that Celeribacter genomes harboured at least 12 putative genes encoding industrially important GHs that are grouped as cellulases, β-glucanases, hemicellulases, and starch-degrading enzymes. Herein, the potential applications of these enzymes are discussed. Furthermore, the activities of two types of GHs (β-glucosidase and licheninase) in strain PS-C1 were demonstrated. These findings suggest that strain PS-C1 could be a reservoir of novel GH enzymes for lignocellulosic biomass degradation.
Collapse
Affiliation(s)
- Nurfatini Radzlin
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Amira Suriaty Yaakop
- School of Biological Sciences, Universiti Sains Malaysia, Minden 11800, Pulau Pinang, Malaysia
| | - Kian Mau Goh
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (K.M.G.); (K.J.L.)
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia; (K.M.G.); (K.J.L.)
| | - Iffah Izzati Zakaria
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
| | - Ummirul Mukminin Kahar
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (N.R.); (I.I.Z.)
| |
Collapse
|
2
|
Li Y, Ding YY, Dang YR, Bai Y, Guan L, Liu NH, Wang YZ, Kang ML, Zhang YQ, Zhang XY. Celeribacter litoreus sp. nov., isolated from intertidal sediment. Int J Syst Evol Microbiol 2022; 72. [PMID: 35156916 DOI: 10.1099/ijsem.0.005241] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, non-flagellated and rod-shaped bacterium, strain ASW11-22T, was isolated from an intertidal sediment collected from a coastal area of Qingdao, PR China. The strain grew at 15-40 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0) and with 0.5-10 % (w/v) NaCl (optimum, 1.0 %). It hydrolysed gelatin and aesculin but did not reduce nitrate to nitrite. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ASW11-22T belonged to the genus Celeribacter, showing the highest sequence similarity to the type strains of Celeribacter halophilus MCCC 1A06432T (98.20 %) and Celeribacter ethanolicus NH195T (97.84 %). The genomic DNA G+C content was 59.1 mol%. The major cellular fatty acid (>10 %) of the strain was summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and its main polar lipids were phosphatidylglycerol and one unidentified aminolipid. The sole respiratory quinone of strain ASW11-22T was ubiquinone-10. On the basis of the polyphasic evidence presented in this paper, strain ASW11-22T represents a novel Celeribacter species, for which the name Celeribacter litoreus sp. nov. is proposed. The type strain is ASW11-22T (=KCTC 82495T=MCCC 1K05584T).
Collapse
Affiliation(s)
- Yi Li
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China.,State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yun-Yun Ding
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yan-Ru Dang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yun Bai
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Li Guan
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Ning-Hua Liu
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Yu-Zhu Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Mei-Lin Kang
- College of Life Sciences, Shanxi Agricultural University, Taigu 030801, PR China
| | - Yu-Qiang Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| | - Xi-Ying Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
3
|
Hördt A, López MG, Meier-Kolthoff JP, Schleuning M, Weinhold LM, Tindall BJ, Gronow S, Kyrpides NC, Woyke T, Göker M. Analysis of 1,000+ Type-Strain Genomes Substantially Improves Taxonomic Classification of Alphaproteobacteria. Front Microbiol 2020; 11:468. [PMID: 32373076 PMCID: PMC7179689 DOI: 10.3389/fmicb.2020.00468] [Citation(s) in RCA: 259] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 03/04/2020] [Indexed: 11/13/2022] Open
Abstract
The class Alphaproteobacteria is comprised of a diverse assemblage of Gram-negative bacteria that includes organisms of varying morphologies, physiologies and habitat preferences many of which are of clinical and ecological importance. Alphaproteobacteria classification has proved to be difficult, not least when taxonomic decisions rested heavily on a limited number of phenotypic features and interpretation of poorly resolved 16S rRNA gene trees. Despite progress in recent years regarding the classification of bacteria assigned to the class, there remains a need to further clarify taxonomic relationships. Here, draft genome sequences of a collection of genomes of more than 1000 Alphaproteobacteria and outgroup type strains were used to infer phylogenetic trees from genome-scale data using the principles drawn from phylogenetic systematics. The majority of taxa were found to be monophyletic but several orders, families and genera, including taxa recognized as problematic long ago but also quite recent taxa, as well as a few species were shown to be in need of revision. According proposals are made for the recognition of new orders, families and genera, as well as the transfer of a variety of species to other genera and of a variety of genera to other families. In addition, emended descriptions are given for many species mainly involving information on DNA G+C content and (approximate) genome size, both of which are confirmed as valuable taxonomic markers. Similarly, analysis of the gene content was shown to provide valuable taxonomic insights in the class. Significant incongruities between 16S rRNA gene and whole genome trees were not found in the class. The incongruities that became obvious when comparing the results of the present study with existing classifications appeared to be caused mainly by insufficiently resolved 16S rRNA gene trees or incomplete taxon sampling. Another probable cause of misclassifications in the past is the partially low overall fit of phenotypic characters to the sequence-based tree. Even though a significant degree of phylogenetic conservation was detected in all characters investigated, the overall fit to the tree varied considerably.
Collapse
Affiliation(s)
- Anton Hördt
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marina García López
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Jan P. Meier-Kolthoff
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Marcel Schleuning
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Lisa-Maria Weinhold
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czechia
| | - Brian J. Tindall
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Sabine Gronow
- Department of Microorganisms, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| | - Nikos C. Kyrpides
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Tanja Woyke
- Department of Energy, Joint Genome Institute, Berkeley, CA, United States
| | - Markus Göker
- Department of Bioinformatics, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Brunswick, Germany
| |
Collapse
|
4
|
Structure, antiproliferative and cancer preventive properties of sulfated α-d-fucan from the marine bacterium Vadicella arenosi. Carbohydr Polym 2019; 221:120-126. [DOI: 10.1016/j.carbpol.2019.05.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/29/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
|
5
|
Amylibacter marinus gen. nov., sp. nov., isolated from surface seawater. Int J Syst Evol Microbiol 2014; 64:4016-4020. [DOI: 10.1099/ijs.0.065847-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, non-motile, mesophilic, aerobic, rod-shaped bacterium, designated strain 2-3T, was isolated from surface seawater at Muroto city, Kochi prefecture, Japan. This strain grew well with starch. Phylogenetic analyses based on 16S rRNA gene sequences showed that the strain fell within the family
Rhodobacteraceae
and that the strain was related most closely to the genus
Pacificibacter
(94.0 % sequence similarity to the type strain). The DNA G+C content was 52.4 mol%. The major fatty acids were C18 : 1ω7c, C14 : 0 and C16 : 0. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, one unidentified lipid, one unidentified aminolipid and one unidentified phospholipid. The major isoprenoid quinone was Q-10. Strain 2-3T did not grow at 4 or 35 °C, while the type strain of the type species of the genus
Pacificibacter
grows at both temperatures. From the taxonomic data obtained in this study, it is proposed that strain 2-3T be placed into a novel genus and species named Amylibacter marinus gen. nov., sp. nov. in the family
Rhodobacteraceae
. The type strain of Amylibacter marinus is 2-3T ( = NBRC 110140T = LMG 28364T).
Collapse
|
6
|
Poseidonocella pacifica gen. nov., sp. nov. and Poseidonocella sedimentorum sp. nov., novel alphaproteobacteria from the shallow sandy sediments of the Sea of Japan. Arch Microbiol 2011; 194:113-21. [DOI: 10.1007/s00203-011-0736-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 06/27/2011] [Accepted: 07/12/2011] [Indexed: 10/17/2022]
|
7
|
List of new names and new combinations previously effectively, but not validly, published. Int J Syst Evol Microbiol 2011. [DOI: 10.1099/ijs.0.034967-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The purpose of this announcement is to effect the valid publication of the following effectively published new names and new combinations under the procedure described in the Bacteriological Code (1990 Revision). Authors and other individuals wishing to have new names and/or combinations included in future lists should send three copies of the pertinent reprint or photocopies thereof, or an electronic copy of the published paper, to the IJSEM Editorial Office for confirmation that all of the other requirements for valid publication have been met. It is also a requirement of IJSEM and the ICSP that authors of new species, new subspecies and new combinations provide evidence that types are deposited in two recognized culture collections in two different countries. It should be noted that the date of valid publication of these new names and combinations is the date of publication of this list, not the date of the original publication of the names and combinations. The authors of the new names and combinations are as given below, and these authors’ names will be included in the author index of the present issue. Inclusion of a name on these lists validates the publication of the name and thereby makes it available in bacteriological nomenclature. The inclusion of a name on this list is not to be construed as taxonomic acceptance of the taxon to which the name is applied. Indeed, some of these names may, in time, be shown to be synonyms, or the organisms may be transferred to another genus, thus necessitating the creation of a new combination.
Collapse
|