1
|
Torres-Haro A, Verdín J, Kirchmayr MR, Arellano-Plaza M. Combined 6-benzylaminopurine and H 2O 2 stimulate the astaxanthin biosynthesis in Xanthophyllomyces dendrorhous. Appl Microbiol Biotechnol 2024; 108:158. [PMID: 38252271 PMCID: PMC10803577 DOI: 10.1007/s00253-023-12875-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 01/23/2024]
Abstract
Astaxanthin is one of the most attractive carotenoids due to its high antioxidant activity and beneficial biological properties, while Xanthophyllomyces dendrorhous is one of its main microbial sources. Since astaxanthin is synthesized as a response to oxidative stress, several oxidative agents have been evaluated to increase X. dendrorhous astaxanthin yields. However, the extent of the stimulation is determined by the cellular damage caused by the applied oxidative agent. Phytohormones have also been reported as stimulants of astaxanthin biosynthesis acting directly on its metabolic pathway and indirectly promoting cellular resistance to reactive oxygen species. We reasoned that both oxidative agents and phytohormones lead to increased astaxanthin synthesis, but the latter could mitigate the drawbacks of the former. Thus, here, the stimulation on astaxanthin biosynthesis, as well as the cellular and transcriptional responses of wild type X. dendrorhous to phytohormones (6-benzylaminopurine, 6-BAP; abscisic acid, ABA; and indole-3-acetic acid, IAA), and oxidative agents (glutamate, menadione, H2O2, and/or Fe2+) were evaluated as a single or combined treatments. ABA and 6-BAP were the best individual stimulants leading to 2.24- and 2.60-fold astaxanthin biosynthesis increase, respectively. Nevertheless, the effect of combined 6-BAP and H2O2 led to a 3.69-fold astaxanthin synthesis increase (0.127 ± 0.018 mg astaxanthin/g biomass). Moreover, cell viability (> 82.75%) and mitochondrial activity (> 82.2%) remained almost intact in the combined treatment (6-BAP + H2O2) compared to control (< 52.17% cell viability; < 85.3% mitochondrial activity). On the other hand, mRNA levels of hmgR, idi, crtYB, crtR, and crtS, genes of the astaxanthin biosynthetic pathway, increased transiently along X. dendrorhous fermentation due to stimulations assayed in this study. KEY POINTS: • Combined 6-BAP and H2O2 is the best treatment to increase astaxanthin yields in X. dendrorhous. • 6-BAP preserves cell integrity under oxidative H2O2 stress conditions. • 6-BAP and H2O2 increase transcriptional responses of hmgR, idi, and crt family genes transiently.
Collapse
Affiliation(s)
- Alejandro Torres-Haro
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Jorge Verdín
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Manuel R Kirchmayr
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico
| | - Melchor Arellano-Plaza
- Biotecnología Industrial, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C. Camino Arenero 1227, El Bajío del Arenal, 45019, Zapopan, Jalisco, Mexico.
| |
Collapse
|
2
|
Singh RV, Sambyal K. An overview of β-carotene production: Current status and future prospects. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101717] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
|
4
|
Wang Z, Zhang R, Yang Q, Zhang J, Zhao Y, Zheng Y, Yang J. Recent advances in the biosynthesis of isoprenoids in engineered Saccharomyces cerevisiae. ADVANCES IN APPLIED MICROBIOLOGY 2020; 114:1-35. [PMID: 33934850 DOI: 10.1016/bs.aambs.2020.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Isoprenoids, as the largest group of chemicals in the domains of life, constitute more than 50,000 members. These compounds consist of different numbers of isoprene units (C5H8), by which they are typically classified into hemiterpenoids (C5), monoterpenoids (C10), sesquiterpenoids (C15), diterpenoids (C20), triterpenoids (C30), and tetraterpenoids (C40). In recent years, isoprenoids have been employed as food additives, in the pharmaceutical industry, as advanced biofuels, and so on. To realize the sufficient and efficient production of valuable isoprenoids on an industrial scale, fermentation using engineered microorganisms is a promising strategy compared to traditional plant extraction and chemical synthesis. Due to the advantages of mature genetic manipulation, robustness and applicability to industrial bioprocesses, Saccharomyces cerevisiae has become an attractive microbial host for biochemical production, including that of various isoprenoids. In this review, we summarized the advances in the biosynthesis of isoprenoids in engineered S. cerevisiae over several decades, including synthetic pathway engineering, microbial host engineering, and central carbon pathway engineering. Furthermore, the challenges and corresponding strategies towards improving isoprenoid production in engineered S. cerevisiae were also summarized. Finally, suggestions and directions for isoprenoid production in engineered S. cerevisiae in the future are discussed.
Collapse
Affiliation(s)
- Zhaobao Wang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Rubing Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
| | - Qun Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Jintian Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Youxi Zhao
- College of Biochemical Engineering, Beijing Union University, Beijing, China
| | - Yanning Zheng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jianming Yang
- Energy-Rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
| |
Collapse
|
5
|
Lu Q, Liu JZ. Enhanced Astaxanthin Production in Escherichia coli via Morphology and Oxidative Stress Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:11703-11709. [PMID: 31578056 DOI: 10.1021/acs.jafc.9b05404] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Astaxanthin is a carotenoid of high commercial value because of its excellent antioxidative, anti-inflammatory, and anticancer properties. Here, we developed a novel strategy for improving the production of astaxanthin via morphology and oxidative stress engineering. First, we identified the morphology-/membrane- and oxidative stress-related genes, which should be knocked down, using the CRISPRi system. Deleting the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) generated longer and larger cells with higher reactive oxygen species (ROS) levels, thus enhancing the production of astaxanthin and decreasing cell growth. To not only improve cell growth but also obtain longer and larger cells with higher ROS levels, a complementary expression system using a temperature-sensitive plasmid was established. Complementarily expressing the morphology-/membrane-related genes (lpp and bamB) and the oxidative stress-related genes (uspE and yggE) further improved the production of astaxanthin to 11.92 mg/g dry cell weight in shake flask cultures.
Collapse
Affiliation(s)
- Qian Lu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| | - Jian-Zhong Liu
- Institute of Synthetic Biology, Biomedical Center, Guangdong Province Key Laboratory of Improved Variety Reproduction in Aquatic Economic Animals and South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, School of Life Sciences , Sun Yat-sen University , Guangzhou 510275 , China
| |
Collapse
|
6
|
Landolfo S, Chessa R, Zara G, Zara S, Budroni M, Mannazzu I. Rhodotorula mucilaginosa C2.5t1 Modulates Carotenoid Content and CAR Genes Transcript Levels to Counteract the Pro-Oxidant Effect of Hydrogen Peroxide. Microorganisms 2019; 7:E316. [PMID: 31487889 PMCID: PMC6780508 DOI: 10.3390/microorganisms7090316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 08/23/2019] [Accepted: 09/03/2019] [Indexed: 11/17/2022] Open
Abstract
In order to contribute to the elucidation of the biological role of carotenoids, the cellular response to hydrogen peroxide was analyzed in the red yeast R. mucilaginosa. For that, the wild strain C2.5t1, that produces β-carotene, torulene, and torularhodin, and the albino mutant 200A6 that is incapable of producing detectable amounts of these carotenoids, were grown in the presence of increasing concentrations of hydrogen peroxide. In spite of the difference in carotenoid content, the two strains presented comparable resistance to the pro-oxidant that showed a minimum inhibitory concentration of 6 mM. When subject to 1 h treatment with 16 mM hydrogen peroxide the two strains increased catalase but not superoxide activity, suggesting that catalase plays a major role in cell protection in both the wild strain and the albino mutant. Moreover, C2.5t1 reduced its carotenoid content by about 40% upon hydrogen peroxide treatment. This reduction in carotenoids was in agreement with a significant decrease of the transcript levels of genes involved in carotenoid biosynthesis. Since an excess of β-carotene may enhance reactive oxygen species toxicity, these results suggest that C2.5t1 modulates carotenoid content to counteract the pro-oxidant effect of hydrogen peroxide.
Collapse
Affiliation(s)
- Sara Landolfo
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Rossella Chessa
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Giacomo Zara
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Severino Zara
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Marilena Budroni
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy
| | - Ilaria Mannazzu
- Department of Agriculture, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, Italy.
| |
Collapse
|
7
|
Iterative integration of multiple-copy pathway genes in Yarrowia lipolytica for heterologous β-carotene production. Metab Eng 2017; 41:192-201. [PMID: 28414174 DOI: 10.1016/j.ymben.2017.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 04/10/2017] [Accepted: 04/12/2017] [Indexed: 11/24/2022]
Abstract
β-Carotene is a terpenoid molecule with high hydrophobicity that is often used as an additive in foods and feed. Previous work has demonstrated the heterologous biosynthesis of β-carotene from an intrinsic high flux of acetyl-CoA in 12 steps through 11 genes in Yarrowia lipolytica. Here, an efficient biosynthetic pathway capable of producing 100-fold more β-carotene than the baseline construct was generated using strong promoters and multiple gene copies for each of the 12 steps. Using fed-batch fermentation with an optimized medium, the engineered pathway could produce 4g/L β-carotene, which was stored in lipid droplets within engineered Y. lipolytica cells. Expansion of these cells for squalene production also demonstrated that Y. lipolytica could be an industrially relevant platform for hydrophobic terpenoid production.
Collapse
|
8
|
Shen HJ, Cheng BY, Zhang YM, Tang L, Li Z, Bu YF, Li XR, Tian GQ, Liu JZ. Dynamic control of the mevalonate pathway expression for improved zeaxanthin production in Escherichia coli and comparative proteome analysis. Metab Eng 2016; 38:180-190. [DOI: 10.1016/j.ymben.2016.07.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 01/13/2023]
|
9
|
Li DA, Walker E, Francki MG. Identification of a member of the catalase multigene family on wheat chromosome 7A associated with flour b* colour and biological significance of allelic variation. Mol Genet Genomics 2015; 290:2313-24. [PMID: 26134858 DOI: 10.1007/s00438-015-1083-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 06/17/2015] [Indexed: 12/26/2022]
Abstract
Carotenoids (especially lutein) are known to be the pigment source for flour b* colour in bread wheat. Flour b* colour variation is controlled by a quantitative trait locus (QTL) on wheat chromosome 7AL and one gene from the carotenoid pathway, phytoene synthase, was functionally associated with the QTL on 7AL in some, but not all, wheat genotypes. A SNP marker within a sequence similar to catalase (Cat3-A1snp) derived from full-length (FL) cDNA (AK332460), however, was consistently associated with the QTL on 7AL and implicated in regulating hydrogen peroxide (H2O2) to control carotenoid accumulation affecting flour b* colour. The number of catalase genes on chromosome 7AL was investigated in this study to identify which gene may be implicated in flour b* variation and two were identified through interrogation of the draft wheat genome survey sequence consisting of five exons and a further two members having eight exons identified through comparative analysis with the single catalase gene on rice chromosome 6, PCR amplification and sequencing. It was evident that the catalase genes on chromosome 7A had duplicated and diverged during evolution relative to its counterpart on rice chromosome 6. The detection of transcripts in seeds, the co-location with Cat3-A1snp marker and maximised alignment of FL-cDNA (AK332460) with cognate genomic sequence indicated that TaCat3-A1 was the member of the catalase gene family associated with flour b* colour variation. Re-sequencing identified three alleles from three wheat varieties, TaCat3-A1a, TaCat3-A1b and TaCat3-A1c, and their predicted protein identified differences in peroxisomal targeting signal tri-peptide domain in the carboxyl terminal end providing new insights into their potential role in regulating cellular H2O2 that contribute to flour b* colour variation.
Collapse
Affiliation(s)
- Dora A Li
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6152, Australia.,State Agricultural Biotechnology Centre, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Esther Walker
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6152, Australia.,State Agricultural Biotechnology Centre, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia
| | - Michael G Francki
- Department of Agriculture and Food Western Australia, 3 Baron Hay Ct, South Perth, WA, 6152, Australia. .,State Agricultural Biotechnology Centre, Murdoch University, 90 South St, Murdoch, WA, 6150, Australia.
| |
Collapse
|
10
|
Aslan A, Can Mİ, Boydak D. Anti-oxidant effects of pomegranate juice on Saccharomyces cerevisiae cell growth. AFRICAN JOURNAL OF TRADITIONAL, COMPLEMENTARY, AND ALTERNATIVE MEDICINES 2014; 11:14-8. [PMID: 25392575 DOI: 10.4314/ajtcam.v11i4.3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Pomegranate juice has a number of positive effects on both human and animal subjects. MATERIAL AND METHODS Four groups were used in this study. i: Control group, ii: H2O2 group, iii: Pomegranate juice (PJ) group and iv: PJ + H2O2 group. Following the sterilization method for pomegranate juice (10%) and H2O2 (6% v/v), Saccharomyces cerevisiae cultures were added and the cultivation incubated at 35°C for 72 hours. Fatty acids and vitamin concentrations were measured using HPLC and GC and the total protein bands profile were determined by SDS-PAGE. RESULTS According to our results statistically significant differences have been determined among the study groups in terms of fatty acids and vitamin (p<0,05). Fatty acid synthesis, vitamin control and cell density increased in groups to which PJ was given in comparison with the control group (p<0,05). Pomegranate juice increased vitamins, fatty acids and total protein expression in Saccharomyces cerevisiae in comparison with the control. CONCLUSION Pomegranate juice has a positive effect on fatty acid, vitamin and protein synthesis by Saccharomyces cerevisiae. Accordingly, we believe that it has significantly decreased oxidative damage thereby making a positive impact on yeast development.
Collapse
Affiliation(s)
- Abdullah Aslan
- Firat University, Faculty of Science, Department of Biology, Elazığ-TURKEY
| | | | - Didem Boydak
- Firat University, Faculty of Science, Department of Biology, Elazığ-TURKEY
| |
Collapse
|
11
|
Reyes LH, Gomez JM, Kao KC. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab Eng 2013; 21:26-33. [PMID: 24262517 DOI: 10.1016/j.ymben.2013.11.002] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 10/24/2013] [Accepted: 11/11/2013] [Indexed: 10/26/2022]
Abstract
Adaptive laboratory evolution is an important tool for the engineering of strains for industrially relevant phenotypes. Traditionally, adaptive laboratory evolution has been implemented to improve robustness of industrial strains under diverse operational conditions; however due to the required coupling between growth and survival, its application for increased production of secondary metabolites generally results in decreased production due to the metabolic burden imposed by, or toxicity of, the produced compound. In this study, adaptive laboratory evolution was successfully applied to improve carotenoids production in an engineered Saccharomyces cerevisiae producer strain by exploiting the antioxidant properties of carotenoids. Short-term evolution experiment using periodic hydrogen peroxide shocking schemes resulted in a 3-fold increase in carotenoids production (from 6 mg/g dry cell weight to up to 18 mg/g dry cell weight). Subsequent transcriptome analysis was used to elucidate the molecular mechanisms for increased carotenoids production. Upregulation of genes related with lipid biosynthesis and mevalonate biosynthesis pathways were commonly observed in the carotenoids hyper-producers analyzed.
Collapse
Affiliation(s)
- Luis H Reyes
- Department of Chemical Engineering, Texas A&M University, College Station, United States
| | - Jose M Gomez
- Department of Chemical Engineering, Texas A&M University, College Station, United States
| | - Katy C Kao
- Department of Chemical Engineering, Texas A&M University, College Station, United States.
| |
Collapse
|
12
|
Irazusta V, Nieto-Peñalver CG, Cabral ME, Amoroso MJ, de Figueroa LI. Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
A pH control strategy for increased β-carotene production during batch fermentation by recombinant industrial wine yeast. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.01.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
14
|
Serum β-carotene concentrations and the risk of congestive heart failure in men: a population-based study. Int J Cardiol 2013; 168:1841-6. [PMID: 23333366 DOI: 10.1016/j.ijcard.2012.12.072] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 12/13/2012] [Accepted: 12/25/2012] [Indexed: 11/23/2022]
Abstract
BACKGROUND Fruit and vegetable intake has been associated with lower risk for cardiovascular diseases, but data on congestive heart failure (CHF) are inconsistent. The association of serum carotenoids, biomarkers reflecting fruit and vegetable intake, with the risk of CHF has not been well documented in previous studies. We therefore examined the association between carotenoid levels and the risk of CHF. METHODS Data were available for 1031 males aged 46 to 65 years participating in the Kuopio Ischaemic Heart Disease Risk Factor Study (Finland). Baseline data for the present study were collected between 1991 and 1993. The association between serum concentrations of carotenoids and the risk of CHF was examined by using Cox proportional hazard models. RESULTS During the median of 17.8 follow-up years, CHF occurred in 72 patients. Age and examination year adjusted risk (hazard ratio, HR) for CHF among men within the lowest quartile of serum β-carotene was 4.08 (95% CI, 1.90-8.78, p<0.001) as compared to men in the highest quartile of serum β-carotene. After further adjustment for many potential confounders, men with the lowest quartile of β-carotene had almost 3-fold increased risk of CHF (HR=2.78, 95% CI, 1.23-6.25, p=0.014). However, serum concentrations of lycopene and α-carotene were not related to the risk of CHF. CONCLUSIONS The present study suggests that low concentrations of serum β-carotene may be associated with an increased risk of CHF.
Collapse
|
15
|
Enhancement of β-Carotene Production by Over-Expression of HMG-CoA Reductase Coupled with Addition of Ergosterol Biosynthesis Inhibitors in Recombinant Saccharomyces cerevisiae. Curr Microbiol 2011; 64:159-63. [DOI: 10.1007/s00284-011-0044-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Accepted: 10/24/2011] [Indexed: 12/25/2022]
|
16
|
Yan GL, Liang HY, Duan CQ, Han BZ. Enhanced production of β-carotene by recombinant industrial wine yeast using grape juice as substrate. Curr Microbiol 2011; 64:152-8. [PMID: 22080204 DOI: 10.1007/s00284-011-0047-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/14/2011] [Indexed: 11/30/2022]
Abstract
In this study, both recombinant Saccharomyces cerevisiae T73-63 and FY-09 derived from the industrial wine yeast T73-4 and laboratory yeast FY1679-01B, respectively, were constructed and compared for their β-carotene production in real grape juice. The results showed that highest β-carotene content (5.89 mg/g) was found in strain T73-63, which was 2.1 fold higher than that of strain FY-09. Although the cell growth was inhibited by the metabolic burden induced by the production of heterogeneous β-carotene, the pigment yield in T73-63 was still 1.7 fold higher than that of FY-09. Furthermore, high contents of ergosterol and fatty acid were also observed in T73-63. These results suggest that industrial wine yeast has highly active metabolic flux in mevalonate pathway, which leads to more carbon flux into carotenoid branch compared to that of laboratory yeast. The results of this study collectively suggest that in the application of recombinant strains to produce carotenoid using agro-industrial by-products as substrate, the suitable host strains should have active mevalonate pathway. For this purpose, the industrial wine yeast is a suitable candidate.
Collapse
Affiliation(s)
- Guo-liang Yan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, People's Republic of China
| | | | | | | |
Collapse
|