1
|
Yang J, Zhang S, Zhang Y, Zhao D, Liu T, Sun X, Yan L. Phenomic and transcriptomic analyses reveal the sequential synthesis of Fe 3O 4 nanoparticles in Acidithiobacillus ferrooxidans BYM. Microbiol Spectr 2023; 11:e0172923. [PMID: 37800960 PMCID: PMC10714799 DOI: 10.1128/spectrum.01729-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE As the most important non-magnetotactic magnetosome-producing bacteria, Acidithiobacillus ferrooxidans only requires very mild conditions to produce Fe3O4 nanoparticles, thus conferring greater flexibility and potential application in biomagnetic nanoparticle production. However, the available information cannot explain the mechanism of Fe3O4 nanoparticle formation in A. ferrooxidans. In this study, we applied phenomic and transcriptomic analyses to reveal this mechanism. We found that different treatment condition factors notably affect the phenomic data of Fe3O4 nanoparticle in A. ferrooxidans. Using transcriptomic analyses, the gene network controlling/regulating Fe3O4 nanoparticle biogenesis in A. ferrooxidans was proposed, excavating the candidate hub genes for Fe3O4 nanoparticle formation in A. ferrooxidans. Based on this information, a sequential model for Fe3O4 nanoparticle synthesis in A. ferrooxidans was hypothesized. It lays the groundwork for further clarifying the feature of Fe3O4 nanoparticle synthesis.
Collapse
Affiliation(s)
- Jiani Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Yu Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Dan Zhao
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Tao Liu
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| | - Xindi Sun
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang, China
- Key Laboratory of Low-Carbon Green Agriculture in Northeastern China, Ministry of Agriculture and Rural Affairs, Daqing, Heilongjiang, China
| |
Collapse
|
2
|
Yang M, Zhan Y, Zhang S, Wang W, Yan L. Biological materials formed by Acidithiobacillus ferrooxidans and their potential applications. 3 Biotech 2020; 10:475. [PMID: 33088669 PMCID: PMC7554276 DOI: 10.1007/s13205-020-02463-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022] Open
Abstract
A variety of biological materials including schwertmannite, jarosite, iron-sulfur cluster (ISC) and magnetosomes can be produced by Acidithiobacillus ferrooxidans (A. ferrooxidans). Their possible formation mechanisms involved in iron transformation, iron transport, and electron transfer were proposed. The schwertmannite formation usually occurs under the pH of 2.0-3.51, and a lower or higher pH will promote jarosite to be produced. Available Fe2+ in the environment and the carrier proteins that can transport Fe2+ to the intracellular membranes of A. ferrooxidans play a critical role in the synthesis of magnetosomes and ISC. The potential applications of these biological materials were reviewed, including removal of heavy metal by schwertmannite, detoxification of toxic species by jarosite, the transference of electron and ripening the iron sulfur protein by ISC, and biomedical application of magnetosomes. Additionally, some perspectives for the molecular mechanisms of synthesis and regulation of these biomaterials were briefly described.
Collapse
Affiliation(s)
- Mengran Yang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People’s Republic of China
- School of Life Science, Lanzhou University, Tianshui Road No. 222, Lanzhou, 730000 People’s Republic of China
| | - Yue Zhan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People’s Republic of China
| | - Shuang Zhang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People’s Republic of China
| | - Weidong Wang
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People’s Republic of China
| | - Lei Yan
- Heilongjiang Provincial Key Laboratory of Environmental Microbiology and Recycling of Argo-Waste in Cold Region, College of Life Science and Biotechnology, Heilongjiang Bayi Agricultural University (HBAU), 5 Xinfeng Road, Daqing High-Tech Industrial Development Zone, Daqing, Heilongjiang Province 163319 People’s Republic of China
| |
Collapse
|
3
|
Liu Y, Guo S, Yu R, Zou K, Qiu G. A new cytoplasmic monoheme cytochrome c from Acidithiobacillus ferrooxidans involved in sulfur oxidation. Curr Microbiol 2013; 68:285-92. [PMID: 24129838 DOI: 10.1007/s00284-013-0473-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/31/2013] [Indexed: 11/24/2022]
Abstract
Acidithiobacillus ferrooxidans can obtain energy from the oxidation of various reduced inorganic sulfur compounds (RISCs, e.g., sulfur) and ferrous iron in bioleaching so has multiple branched respiratory pathways with a diverse range of electron transporters, especially cytochrome c proteins. A cytochrome c family gene, afe1130, which has never been reported before, was found by screening the whole genome of A. ferrooxidans. Here we report the differential gene transcription, bioinformatics analysis, and molecular modeling of the protein encoded by the afe1130 gene (AFE1130). The differential transcription of the target afe1130 gene versus the reference rrs gene in the A. ferrooxidans, respectively, on the culture conditions of sulfur and ferrous energy sources was performed through quantitative reverse transcription polymerase chain reaction (qRT-PCR) with a SYBR green-based assay according to the standard curves method. The qRT-PCR results showed that the afe1130 gene in sulfur culture condition was obviously more transcribed than that in ferrous culture condition. Bioinformatics analysis indicated that the AFE1130 was affiliated to the subclass ID of class I of cytochrome c and located in cytoplasm. Molecular modeling results exhibited that the AFE1130 protein consisted of 5 alpha-helices harboring one heme c group covalently bonded by Cys13 and Cys16 and ligated by His17 and Met62 and owned a big raised hydrophobic surface responsible for attaching to inner cytomembrane. So the AFE1130 in A. ferrooxidans plays a role in the RISCs oxidation in bioleaching in cytoplasm bound to inner membrane.
Collapse
Affiliation(s)
- Yuandong Liu
- Key Lab of Biometallurgy of the Ministry of Education, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China,
| | | | | | | | | |
Collapse
|
4
|
Hu Q, Wu X, Jiang Y, Liu Y, Liang Y, Liu X, Yin H, Baba N. Differential gene expression and bioinformatics analysis of copper resistance gene afe_1073 in Acidithiobacillus ferrooxidans. Biol Trace Elem Res 2013; 152:91-7. [PMID: 23344975 DOI: 10.1007/s12011-012-9589-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 12/20/2012] [Indexed: 01/13/2023]
Abstract
Copper resistance of acidophilic bacteria is very significant in bioleaching of copper ore since high concentration of copper are harmful to the growth of organisms. Copper resistance gene afe_1073 was putatively considered to be involved in copper homeostasis in Acidithiobacillus ferrooxidans ATCC23270. In the present study, differential expression of afe_1073 in A. ferrooxidans strain DY26 and DC was assessed with quantitative reverse transcription polymerase chain reaction. The results showed the expression of afe_1073 in two strains increased with the increment of copper concentrations. The expression of DY26 was lower than that of DC at the same copper concentration although A. ferrooxidans strain DY26 possessed higher copper resistance than strain DC. In addition, bioinformatics analysis showed AFE_1073 was a typical transmembrane protein P1b1-ATPase, which could reduce the harm of Cu(+) by pumping it out from the cell. There were two mutation sites in AFE_1073 between DY26 and DC and one may change the hydrophobicity of AFE_1073, which could enhance the ability of DY26 to pump out Cu(+). Therefore, DY26 needed less gene expression of afe_1073 for resisting copper toxicity than that of DC at the same copper stress. Our study will be beneficial to understanding the copper resistance mechanism of A. ferrooxidans.
Collapse
Affiliation(s)
- Qi Hu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China 410083
| | | | | | | | | | | | | | | |
Collapse
|
5
|
HdrC2 from Acidithiobacillus ferrooxidans owns two iron-sulfur binding motifs but binds only one variable cluster between [4Fe-4S] and [3Fe-4S]. Curr Microbiol 2012; 66:88-95. [PMID: 23053491 DOI: 10.1007/s00284-012-0244-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/20/2012] [Indexed: 10/27/2022]
Abstract
The heterodisulfide reductase complex HdrABC from Acidithiobacillus ferrooxidans was suggested to own novel features that act in reverse to convert the sulfane sulfur of GS( n )H species (n > 1) into sulfite in sulfur oxidation. The HdrC subunit is potentially encoded by two different highly upregulated genes sharing only 29 % identity in A. ferrooxidans grown in sulfur-containing medium, which were named as HdrC1 and HdrC2, respectively and had been confirmed to contain iron-sulfur cluster by expression and characterization, especially the HdrC1 which had been showed to bind only one [4Fe-4S] cluster by mutations. However, the mutations of the HdrC2 remain to be done and the detailed binding information of it is still unclear. Here, we report the expression, mutations, and molecular modeling of the HdrC2 from A. ferrooxidans. This HdrC2 had two identical motifs (Cx(2)Cx(2)Cx(3)C) containing total of eight cysteine residues potentially for iron-sulfur cluster binding. This purified HdrC2 was exhibited to contain one variable cluster converted between [4Fe-4S] and [3Fe-4S] according to different conditions by the UV-scanning and EPR spectra. The site-directed mutagenesis results of these eight residues further confirmed that the HdrC2 in reduction with Fe(2+) condition loaded only one [4Fe-4S](+) with spin S = 1/2 ligated by the residues of Cys73, Cys109, Cys112, and Cys115; the HdrC2 in natural aeration condition lost the Fe atom ligated by the residue of Cys73 and loaded only one [3Fe-4S](0) with spin S = 0; the HdrC2 in oxidation condition loaded only one [3Fe-4S](+) with spin S = 1/2. Molecular modeling results were also in line with the experiment results.
Collapse
|