1
|
Bosch-Navarrete C, Pérez-Moreno G, Annang F, Diaz-Gonzalez R, García-Hernández R, Rocha H, Gamarro F, Cordón-Obras C, Navarro M, Rodriguez A, Genilloud O, Reyes F, Vicente F, Ruiz-Pérez LM, González-Pacanowska D. Strasseriolides display in vitro and in vivo activity against trypanosomal parasites and cause morphological and size defects in Trypanosoma cruzi. PLoS Negl Trop Dis 2023; 17:e0011592. [PMID: 37713416 PMCID: PMC10529594 DOI: 10.1371/journal.pntd.0011592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 09/27/2023] [Accepted: 08/14/2023] [Indexed: 09/17/2023] Open
Abstract
Neglected diseases caused by kinetoplastid parasites are a health burden in tropical and subtropical countries. The need to create safe and effective medicines to improve treatment remains a priority. Microbial natural products are a source of chemical diversity that provides a valuable approach for identifying new drug candidates. We recently reported the discovery and bioassay-guided isolation of a novel family of macrolides with antiplasmodial activity. The novel family of four potent antimalarial macrolides, strasseriolides A-D, was isolated from cultures of Strasseria geniculata CF-247251, a fungal strain obtained from plant tissues. In the present study, we analyze these strasseriolides for activity against kinetoplastid protozoan parasites, namely, Trypanosoma brucei brucei, Leishmania donovani and Trypanosoma cruzi. Compounds exhibited mostly low activities against T. b. brucei, yet notable growth inhibition and selectivity were observed for strasseriolides C and D in the clinically relevant intracellular T. cruzi and L. donovani amastigotes with EC50 values in the low micromolar range. Compound C is fast-acting and active against both intracellular and trypomastigote forms of T. cruzi. While cell cycle defects were not identified, prominent morphological changes were visualized by differential interference contrast microscopy and smaller and rounded parasites were visualized upon exposure to strasseriolide C. Moreover, compound C lowers parasitaemia in vivo in acute models of infection of Chagas disease. Hence, strasseriolide C is a novel natural product active against different forms of T. cruzi in vitro and in vivo. The study provides an avenue for blocking infection of new cells, a strategy that could additionally contribute to avoid treatment failure.
Collapse
Affiliation(s)
- Cristina Bosch-Navarrete
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Frederick Annang
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Rosario Diaz-Gonzalez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Raquel García-Hernández
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Hedy Rocha
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Carlos Cordón-Obras
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Miguel Navarro
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Ana Rodriguez
- Department of Microbiology, Core Anti-infectives, New York University School of Medicine, New York, New York, United States of America
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Luis M. Ruiz-Pérez
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina "López-Neyra", Consejo Superior de Investigaciones Científicas (CSIC), Parque Tecnológico Ciencias de la Salud, Granada, Spain
| |
Collapse
|
2
|
Xanthine Analogs Suppress Trypanosoma cruzi Infection In Vitro Using PDEs as Targets. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13040052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Trypanosoma cruzi (T. cruzi), the causative agent of Chagas disease, has infected 6 million people, putting 70 million people at risk worldwide. Presently, very limited drugs are available, and these have severe side effects. Hence, there is an urgency to delve into other pathways and targets for novel drugs. Trypanosoma cruzi (T. cruzi) expresses a number of different cyclic AMP (cAMP)-specific phosphodiesterases (PDEs). cAMP is one of the key regulators of mammalian cell proliferation and differentiation, and it also plays an important role in T. cruzi growth. Very few studies have demonstrated the important role of cyclic nucleotide-specific PDEs in T. cruzi’s survival. T. cruzi phosphodiesterase C (TcrPDEC) has been proposed as a potential new drug target for treating Chagas disease. In the current study, we screen several analogs of xanthine for potency against trypomastigote and amastigote growth in vitro using three different strains of T. cruzi (Tulahuen, Y and CA-1/CL72). One of the potent analogs, GVK14, has been shown to inhibit all three strains of amastigotes in host cells as well as axenic cultures. In conclusion, xanthine analogs that inhibit T. cruzi PDE may provide novel alternative therapeutic options for Chagas disease.
Collapse
|
3
|
Boy RL, Hong A, Aoki JI, Floeter-Winter LM, Laranjeira-Silva MF. Reporter gene systems: a powerful tool for Leishmania studies. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100165. [DOI: 10.1016/j.crmicr.2022.100165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
4
|
Pant AB. The Implementation of the Three Rs in Regulatory Toxicity and Biosafety Assessment: The Indian Perspective. Altern Lab Anim 2021; 48:234-251. [PMID: 33523713 DOI: 10.1177/0261192920986811] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Animal models have long served as a basis for scientific experimentation, biomedical research, drug development and testing, disease modelling and toxicity studies, as they are widely thought to provide meaningful, human-relevant predictions. However, many of these systems are resource intensive and time-consuming, have low predictive value and are associated with great social and ethical dilemmas. Often drugs appear to be effective and safe in these classical animal models, but later prove to be ineffective and/or unsafe in clinical trials. These issues have paved the way for a paradigm shift from the use of in vivo approaches, toward the 'science of alternatives'. This has fuelled several research and regulatory initiatives, including the ban on the testing of cosmetics on animals. The new paradigm has been shifted toward increasing the relevance of the models for human predictivity and translational efficacy, and this has resulted in the recent development of many new methodologies, from 3-D bio-organoids to bioengineered 'human-on-a-chip' models. These improvements have the potential to significantly advance medical research globally. This paper offers a stance on the existing strategies and practices that utilise alternatives to animals, and outlines progress on the incorporation of these models into basic and applied research and education, specifically in India. It also seeks to provide a strategic roadmap to streamline the future directions for the country's policy changes and investments. This strategic roadmap could be a useful resource to guide research institutions, industries, regulatory agencies, contract research organisations and other stakeholders in transitioning toward modern approaches to safety and risk assessment that could replace or reduce the use of animals without compromising the safety of humans or the environment.
Collapse
Affiliation(s)
- Aditya B Pant
- System Toxicology and Health Risk Assessment Group, 538266Council of Scientific and Industrial Research-Indian Institute of Toxicology Research (CSIR-IITR), Lucknow, Uttar Pradesh, India
| |
Collapse
|
5
|
Baek KH, Piel L, Rosazza T, Prina E, Späth GF, No JH. Infectivity and Drug Susceptibility Profiling of Different Leishmania-Host Cell Combinations. Pathogens 2020; 9:pathogens9050393. [PMID: 32443883 PMCID: PMC7281264 DOI: 10.3390/pathogens9050393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/18/2020] [Accepted: 05/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protozoan parasites of the genus Leishmania are the causative agents of leishmaniasis, a spectrum of a disease that threatens public health worldwide. Although next-generation therapeutics are urgently needed, the early stage of the drug discovery process is hampered by very low hit rates from intracellular Leishmania phenotypic high-throughput screenings. Designing and applying a physiologically relevant in vitro assay is therefore in high demand. In this study, we characterized the infectivity, morphology, and drug susceptibility of different Leishmania and host cell infection combinations. Primary bone marrow-derived macrophage (BMDM) and differentiated human acute monocytic leukemia (THP-1) cells were infected with amastigote or promastigote forms of Leishmania amazonensis and Leishmania donovani. Regardless of host cell types, amastigotes were generally well phagocytosed and showed high infectivity, whereas promastigotes, especially those of L. donovani, had predominantly remained in the extracellular space. In the drug susceptibility test, miltefosine and sodium stibogluconate (SSG) showed varying ranges of activity with 14 and >10-fold differences in susceptibility, depending on the host-parasite pairs, indicating the importance of assay conditions for evaluating antileishmanial activity. Overall, our results suggest that combinations of Leishmania species, infection forms, and host cells must be carefully optimized to evaluate the activity of potential therapeutic compounds against Leishmania.
Collapse
Affiliation(s)
- Kyung-Hwa Baek
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
| | - Laura Piel
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Thibault Rosazza
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Eric Prina
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Gerald F. Späth
- Institut Pasteur, Unité de Parasitologie Moléculaire et Signalisation, 75015 Paris, France; (L.P.); (T.R.); (E.P.); (G.F.S.)
| | - Joo Hwan No
- Leishmania Research Laboratory, Institut Pasteur Korea, Seongnam-si, Gyeonggi-do 13488, Korea;
- Correspondence: ; Tel.: +82-31-8018-8210
| |
Collapse
|
6
|
Takagi Y, Akutsu Y, Doi M, Furukawa K. Utilization of proliferable extracellular amastigotes for transient gene expression, drug sensitivity assay, and CRISPR/Cas9-mediated gene knockout in Trypanosoma cruzi. PLoS Negl Trop Dis 2019; 13:e0007088. [PMID: 30640901 PMCID: PMC6347291 DOI: 10.1371/journal.pntd.0007088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 01/25/2019] [Accepted: 12/18/2018] [Indexed: 12/21/2022] Open
Abstract
Trypanosoma cruzi has three distinct life cycle stages; epimastigote, trypomastigote, and amastigote. Amastigote is the replication stage in host mammalian cells, hence this stage of parasite has clinical significance in drug development research. Presence of extracellular amastigotes (EA) and their infection capability have been known for some decades. Here, we demonstrate that EA can be utilized as an axenic culture to aid in stage-specific study of T. cruzi. Amastigote-like property of axenic amastigote can be sustained in LIT medium at 37°C at least for 1 week, judging from their morphology, amastigote-specific UTR-regulated GFP expression, and stage-specific expression of selected endogenous genes. Inhibitory effect of benznidazole and nifurtimox on axenic amastigotes was comparable to that on intracellular amastigotes. Exogenous nucleic acids can be transfected into EA via conventional electroporation, and selective marker could be utilized for enrichment of transfectants. We also demonstrate that CRISPR/Cas9-mediated gene knockout can be performed in EA. Essentiality of the target gene can be evaluated by the growth capability of the knockout EA, either by continuation of axenic culturing or by host infection and following replication as intracellular amastigotes. By taking advantage of the accessibility and sturdiness of EA, we can potentially expand our experimental freedom in studying amastigote stage of T. cruzi.
Collapse
Affiliation(s)
- Yuko Takagi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
- * E-mail:
| | - Yukie Akutsu
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Motomichi Doi
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| | - Koji Furukawa
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan
| |
Collapse
|
7
|
Sadeghi S, Seyed N, Etemadzadeh MH, Abediankenari S, Rafati S, Taheri T. In Vitro Infectivity Assessment by Drug Susceptibility Comparison of Recombinant Leishmania major Expressing Enhanced Green Fluorescent Protein or EGFP-Luciferase Fused Genes with Wild-Type Parasite. THE KOREAN JOURNAL OF PARASITOLOGY 2015; 53:385-94. [PMID: 26323836 PMCID: PMC4566512 DOI: 10.3347/kjp.2015.53.4.385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/24/2015] [Accepted: 07/02/2015] [Indexed: 01/26/2023]
Abstract
Leishmaniasis is a worldwide uncontrolled parasitic disease due to the lack of effective drug and vaccine. To speed up effective drug development, we need powerful methods to rapidly assess drug effectiveness against the intracellular form of Leishmania in high throughput assays. Reporter gene technology has proven to be an excellent tool for drug screening in vitro. The effects of reporter proteins on parasite infectivity should be identified both in vitro and in vivo. In this research, we initially compared the infectivity rate of recombinant Leishmania major expressing stably enhanced green fluorescent protein (EGFP) alone or EGFP-luciferase (EGFP-LUC) with the wild-type strain. Next, we evaluated the sensitivity of these parasites to amphotericin B (AmB) as a standard drug in 2 parasitic phases, promastigote and amastigote. This comparison was made by MTT and nitric oxide (NO) assay and by quantifying the specific signals derived from reporter genes like EGFP intensity and luciferase activity. To study the amastigote form, both B10R and THP-1 macrophage cell lines were infected in the stationary phase and were exposed to AmB at different time points. Our results clearly revealed that the 3 parasite lines had similar in vitro infectivity rates with comparable parasite-induced levels of NO following interferon-γ/lipopolysaccharide induction. Based on our results we proposed the more reporter gene, the faster and more sensitive evaluation of the drug efficiency.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran.,Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Saeid Abediankenari
- Immunogenetic Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sima Rafati
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| | - Tahereh Taheri
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Dagley MJ, Saunders EC, Simpson KJ, McConville MJ. High-content assay for measuring intracellular growth of Leishmania in human macrophages. Assay Drug Dev Technol 2015; 13:389-401. [PMID: 26247370 DOI: 10.1089/adt.2015.652] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leishmania species are sandfly-transmitted protozoan parasites that cause a spectrum of diseases, ranging from localized skin lesions to fatal visceral disease, in more than 12 million people worldwide. These parasites primarily target macrophages in their mammalian hosts and proliferate as non-motile amastigotes in the phagolysosomal compartment of these cells. High-throughput screens for measuring Leishmania growth within this intracellular niche are needed to identify host and parasite factors that are required for virulence and to identify new drug candidates. Here we describe the development of a new high-content imaging method for quantifying the intracellular growth of Leishmania mexicana parasites in THP-1 macrophages. Wild-type parasites were pre-stained with the fluorescent dye CellTracker(™) Orange CMRA and used to infect THP-1 macrophages in 384-well plates. Infected and uninfected macrophages were subsequently stained with CellTracker Green CMFDA, allowing accurate quantitation of the number of parasites per macrophage using separate detector channels. We validated this method for use in high-content drug screening by examining the dose dependence of known anti-leishmanial drugs on intracellular growth. Unlike previous protocols, this method does not require the generation of transgenic fluorescent or bioluminescent parasite lines and can be readily adapted for screening different Leishmania species, strains, or mutant lines in a wide range of phagocytic host cell types.
Collapse
Affiliation(s)
- Michael J Dagley
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| | - Eleanor C Saunders
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| | - Kaylene J Simpson
- 2 Victorian Centre for Functional Genomics, Peter MacCallum Cancer Centre , East Melbourne, Australia .,3 Sir Peter MacCallum Department of Oncology, University of Melbourne , Parkville, Australia
| | - Malcolm J McConville
- 1 Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne , Parkville, Australia
| |
Collapse
|
9
|
Jamal Q, Khan NH, Wahid S, Awan MM, Sutherland C, Shah A. In-vitro sensitivity of Pakistani Leishmania tropica field isolate against buparvaquone in comparison to standard anti-leishmanial drugs. Exp Parasitol 2015; 154:93-7. [PMID: 25911243 DOI: 10.1016/j.exppara.2015.04.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 02/15/2015] [Accepted: 04/17/2015] [Indexed: 10/23/2022]
Abstract
In this study, in vitro anti-leishmanial activity of buparvaquone was evaluated against promastigotes and intracellular amastigotes of Pakistani Leishmania tropica isolate KWH23 in relation to the current standard chemotherapy for leishmaniasis (sodium stibogluconate, sodium stibogluconate, amphotericin B and miltefosine). For buparvaquone, mean % inhibition in intracellular amastigotes at four different concentrations (1.35 µM, 0.51 µM, 0.17 µM and 0.057 µM) was 78%, 44%, 20% and 14% respectively, whereas, against promastigotes it was 89%, 77%, 45% and 35% respectively. IC50 values calculated to estimate the anti-leishmanial activity of buparvaquone against intra-cellular amastigotes and promastigotes was 0.53 µM (95% C.I. = 0.32-0.89) and 0.15 µM (95% C.I. = 0.01-1.84) respectively. Amphotericin B was the most potent in-vitro drug tested, with an IC50 of 0.075 µM (95% C.I. = 0.006-0.907) against promastigotes, and 0.065 µM (95% C.I. = 0.048-0.089) against intra-cellular amastigotes. Amphotericin B was more cytotoxic against THP1 cells, with an IC50 of 0.15 µM (95% C.I. = 0.01-0.95) and an apparent in-vitro therapeutic index of 2.0, than was buparvaquone, with an IC50 of 12.03 µM (95% C.I. = 5.36-26.96) against THP1 cells and a therapeutic index of 80.2. The study proposes that buparvaquone may be further investigated as a candidate drug for treatment of cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Qaisar Jamal
- Department of Zoology, University of Peshawar, Peshawar, Pakistan.
| | - Nazma Habib Khan
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | - Sobia Wahid
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| | | | - Colin Sutherland
- Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Akram Shah
- Department of Zoology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
10
|
Reimão JQ, Trinconi CT, Yokoyama-Yasunaka JK, Miguel DC, Kalil SP, Uliana SRB. Parasite burden in Leishmania (Leishmania) amazonensis-infected mice: validation of luciferase as a quantitative tool. J Microbiol Methods 2013; 93:95-101. [PMID: 23466934 DOI: 10.1016/j.mimet.2013.02.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2013] [Revised: 02/22/2013] [Accepted: 02/23/2013] [Indexed: 10/27/2022]
Abstract
Given the lack of effective and safe alternatives to the drugs already in use, considerable efforts are being applied to the search of new therapeutic options to treat leishmaniasis. A necessary step in the discovery of antileishmanial drugs is the validation of drug candidates in mouse models. The standard methods to quantify the parasite burden in animal models, mainly culture-based, are time consuming and expensive. In recent years, in vivo imaging systems have been proposed as a tool to overcome these problems, allowing parasite detection in living organisms. Here we compared different treatment efficacy evaluation approaches. Recombinant Leishmania (L.) amazonensis lines expressing the luciferase gene (La-LUC) were obtained and characterized for biological properties as compared with the wild type (WT) parental line. Bioluminescence generated by La-LUC was shown to correlate with the number of promastigotes in vitro. La-LUC promastigotes and intracellular amastigotes were equally sensitive to amphotericin B (AmB) as the WT parasites. The clinical pattern of lesion development upon infection with the transgenic lines was similar to lesions observed after infection with the WT strain. The half maximal effective dose (ED50) of AmB was determined in La-LUC infected mice through quantification of bioluminescence in vivo and ex vivo, by limiting dilution and using clinical parameters. There was agreement in the ED50 determined by all methods. Quantification of bioluminescence in vivo and/or ex vivo was elected as the best tool for determining parasite burden to assess drug efficacy in infected mice. Furthermore, the detailed analysis of AmB effectiveness in this model generated useful data to be used in drug combination experiments.
Collapse
Affiliation(s)
- Juliana Q Reimão
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1374, 05508-000 São Paulo, Brazil.
| | | | | | | | | | | |
Collapse
|
11
|
Calvo-Álvarez E, Guerrero NA, Álvarez-Velilla R, Prada CF, Requena JM, Punzón C, Llamas MÁ, Arévalo FJ, Rivas L, Fresno M, Pérez-Pertejo Y, Balaña-Fouce R, Reguera RM. Appraisal of a Leishmania major strain stably expressing mCherry fluorescent protein for both in vitro and in vivo studies of potential drugs and vaccine against cutaneous leishmaniasis. PLoS Negl Trop Dis 2012; 6:e1927. [PMID: 23209866 PMCID: PMC3510153 DOI: 10.1371/journal.pntd.0001927] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 10/16/2012] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Leishmania major cutaneous leishmaniasis is an infectious zoonotic disease. It is produced by a digenetic parasite, which resides in the phagolysosomal compartment of different mammalian macrophage populations. There is an urgent need to develop new therapies (drugs) against this neglected disease that hits developing countries. The main goal of this work is to establish an easier and cheaper tool of choice for real-time monitoring of the establishment and progression of this pathology either in BALB/c mice or in vitro assays. To validate this new technique we vaccinated mice with an attenuated Δhsp70-II strain of Leishmania to assess protection against this disease. METHODOLOGY We engineered a transgenic L. major strain expressing the mCherry red-fluorescent protein for real-time monitoring of the parasitic load. This is achieved via measurement of fluorescence emission, allowing a weekly record of the footpads over eight weeks after the inoculation of BALB/c mice. RESULTS In vitro results show a linear correlation between the number of parasites and fluorescence emission over a range of four logs. The minimum number of parasites (amastigote isolated from lesion) detected by their fluorescent phenotype was 10,000. The effect of antileishmanial drugs against mCherry+L. major infecting peritoneal macrophages were evaluated by direct assay of fluorescence emission, with IC(50) values of 0.12, 0.56 and 9.20 µM for amphotericin B, miltefosine and paromomycin, respectively. An experimental vaccination trial based on the protection conferred by an attenuated Δhsp70-II mutant of Leishmania was used to validate the suitability of this technique in vivo. CONCLUSIONS A Leishmania major strain expressing mCherry red-fluorescent protein enables the monitoring of parasitic load via measurement of fluorescence emission. This approach allows a simpler, faster, non-invasive and cost-effective technique to assess the clinical progression of the infection after drug or vaccine therapy.
Collapse
Affiliation(s)
| | - Nestor Adrian Guerrero
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Jose María Requena
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Luis Rivas
- Centro de Investigaciones Biológicas, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular “Severo Ochoa”, Universidad Autónoma de Madrid, Madrid, Spain
- Diomune, Parque Cientifico de Madrid, Madrid, Spain
| | | | | | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Universidad de León, León, Spain
| |
Collapse
|