1
|
Posada V, Espejo BF, Orduz S. De novo design of short antimicrobial lipopeptides. AN ACAD BRAS CIENC 2021; 93:e20210362. [PMID: 34817038 DOI: 10.1590/0001-3765202120210362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
The increase in bacterial resistance to antibiotics available leads to the search for new compounds with antimicrobial potential, such as peptides and lipopeptides. In this work, eight short lipopeptides with the structural pattern Cn-X1 X2 X3-NH2 were de novo designed, synthesized by Fmoc solid phase and characterized by instrumental techniques. The results of the in vitro tests indicated that two of them, LIP 4 and LIP 12 display antibacterial activity against 4 pathogenic bacteria with minimum inhibitory concentrations (MIC) between 9.50 and 100 μM and between 8.50 and 10.0 μM, respectively; they did not displayed toxicity to human erythrocytes at concentrations between 3.13 and 50.0 μM. The antibacterial mechanism of action observed by scanning electron microscopy indicate that the cell membrane was the target, causing the formation of blisters and vesicles, with size ranging from 100 to 120 nm. The lipopeptide LIP 12, with higher activity, was stable to proteases of human blood serum.
Collapse
Affiliation(s)
- Vanessa Posada
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Química, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| | - Blanca Fabiola Espejo
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Química, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| | - Sergio Orduz
- Universidad Nacional de Colombia, Sede Medellin, Escuela de Biociencias, Facultad de Ciencias, Carrera 65, No. 59A - 110, 050034, Medellin, Colombia
| |
Collapse
|
2
|
Gera S, Kankuri E, Kogermann K. Antimicrobial peptides - Unleashing their therapeutic potential using nanotechnology. Pharmacol Ther 2021; 232:107990. [PMID: 34592202 DOI: 10.1016/j.pharmthera.2021.107990] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
Antimicrobial peptides (AMPs) are potent, mostly cationic, and amphiphilic broad-spectrum host defense antimicrobials that are produced by all organisms ranging from prokaryotes to humans. In addition to their antimicrobial actions, they modulate inflammatory and immune responses and promote wound healing. Although they have clear benefits over traditional antibiotic drugs, their wide therapeutic utilization is compromised by concerns of toxicity, stability, and production costs. Recent advances in nanotechnology have attracted increasing interest to unleash the AMPs' immense potential as broad-spectrum antibiotics and anti-biofilm agents, against which the bacteria have less chances to develop resistance. Topical application of AMPs promotes migration of keratinocytes and fibroblasts, and contributes significantly to an accelerated wound healing process. Delivery of AMPs by employing nanotechnological approaches avoids the major disadvantages of AMPs, such as instability and toxicity, and provides a controlled delivery profile together with prolonged activity. In this review, we provide an overview of the key properties of AMPs and discuss the latest developments in topical AMP therapy using nanocarriers. We use chronic hard-to-heal wounds-complicated by infections, inflammation, and stagnated healing-as an example of an unmet medical need for which the AMPs' wide range of therapeutic actions could provide the most potential benefit. The use of innovative materials and sophisticated nanotechnological approaches offering various possibilities are discussed in more depth.
Collapse
Affiliation(s)
- Sonia Gera
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia
| | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland.
| | - Karin Kogermann
- Institute of Pharmacy, University of Tartu, Nooruse 1, 50411 Tartu, Estonia.
| |
Collapse
|
3
|
Lin L, Chi J, Yan Y, Luo R, Feng X, Zheng Y, Xian D, Li X, Quan G, Liu D, Wu C, Lu C, Pan X. Membrane-disruptive peptides/peptidomimetics-based therapeutics: Promising systems to combat bacteria and cancer in the drug-resistant era. Acta Pharm Sin B 2021; 11:2609-2644. [PMID: 34589385 PMCID: PMC8463292 DOI: 10.1016/j.apsb.2021.07.014] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/05/2023] Open
Abstract
Membrane-disruptive peptides/peptidomimetics (MDPs) are antimicrobials or anticarcinogens that present a general killing mechanism through the physical disruption of cell membranes, in contrast to conventional chemotherapeutic drugs, which act on precise targets such as DNA or specific enzymes. Owing to their rapid action, broad-spectrum activity, and mechanisms of action that potentially hinder the development of resistance, MDPs have been increasingly considered as future therapeutics in the drug-resistant era. Recently, growing experimental evidence has demonstrated that MDPs can also be utilized as adjuvants to enhance the therapeutic effects of other agents. In this review, we evaluate the literature around the broad-spectrum antimicrobial properties and anticancer activity of MDPs, and summarize the current development and mechanisms of MDPs alone or in combination with other agents. Notably, this review highlights recent advances in the design of various MDP-based drug delivery systems that can improve the therapeutic effect of MDPs, minimize side effects, and promote the co-delivery of multiple chemotherapeutics, for more efficient antimicrobial and anticancer therapy.
Collapse
Affiliation(s)
- Liming Lin
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Jiaying Chi
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yilang Yan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Rui Luo
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xiaoqian Feng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Yuwei Zheng
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Dongyi Xian
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Li
- The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Daojun Liu
- Shantou University Medical College, Shantou 515041, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 511443, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
4
|
Badari JC, Díaz-Roa A, Teixeira Rocha MM, Mendonça RZ, da Silva Junior PI. Patagonin-CRISP: Antimicrobial Activity and Source of Antimicrobial Molecules in Duvernoy's Gland Secretion ( Philodryas patagoniensis Snake). Front Pharmacol 2021; 11:586705. [PMID: 33603660 PMCID: PMC7884886 DOI: 10.3389/fphar.2020.586705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
Snake venom contains a variety of toxins with a range of biological activity, among these toxins cysteine-rich secreted proteins (CRISPs) can be found. The proteins of this family have masses of 20-30 kDa and display homologous amino acid sequences containing 16 cysteine residues, forming eight disulfide bonds. Some of these proteins have been explored, characterized, and described in terms of their activity; however, little is known about their range of activities. A search for new antimicrobial molecules is ongoing, as the number of microbial strains resistant to available antibiotics is increasing. We identified antimicrobial activity in the secretion of Duvernoy's gland of the rear-fanged Philodryas patagoniensis. Fractions of this venom were subjected to reverse-phase high performance liquid chromatography and analyzed to determine their antimicrobial activity with a liquid broth inhibition assay. One of the fractions presented activity against a Gram-negative bacterium and a filamentous fungus. This fraction was analyzed with LC-MS/MS, and a protein of 24,848.8 Da was identified. Database searches allowed us to identify it as a CRISP due to the presence of some unique fragments in the molecule. We called it patagonin-CRISP, as the same protein in the venom of P. patagoniensis had previously been characterized as having a different biological activity. Patagonin-CRISP presented activity at very low concentrations and showed no cytotoxic activity. This is the first time that antimicrobial activity has been identified for P. patagoniensis venom or for a CRISP family protein.
Collapse
Affiliation(s)
| | - Andrea Díaz-Roa
- Laboratory for Applied Toxinology (LETA) - Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID Butantan Institute, São Paulo, Brazil.,Escuela de Ciencias Agrícolas, Pecuarias y del Medio Ambiente (ECAPMA), Universidad Nacional Abierta y a Distancia (UNAD), Bogotá, Colombia
| | | | | | - Pedro Ismael da Silva Junior
- Laboratory for Applied Toxinology (LETA) - Center of Toxins, Immune-Response and Cell Signaling - CeTICS/CEPID Butantan Institute, São Paulo, Brazil
| |
Collapse
|
5
|
Duque-Salazar G, Mendez-Otalvaro E, Ceballos-Arroyo AM, Orduz S. Design of antimicrobial and cytolytic peptides by computational analysis of bacterial, algal, and invertebrate proteomes. Amino Acids 2020; 52:1403-1412. [PMID: 33063186 DOI: 10.1007/s00726-020-02900-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 10/05/2020] [Indexed: 11/25/2022]
Abstract
The increase of antibiotic resistance in bacterial species has raised the need to search for novel antimicrobial molecules. Antimicrobial peptides are molecules that commonly display an amphipathic character. In this work, we developed a computational strategy to search for new peptide sequences within the proteome of any organism that includes in-house developed software and the use of artificial intelligence tools available online. Eleven peptides were selected after analyzing 63,343 proteins from the proteomes of bacteria, algae and invertebrates. Then, we validated the results by means of several assays which were carried out against five (5) pathogenic bacterial species and two (2) cancer cell lines. As a result, we found that ten of the peptides were antimicrobial, with minimum inhibitory concentration values between 4 and [Formula: see text]. Furthermore, two of the more active peptides were also cytotoxic to human red blood cells and cancer cells. In general, the antimicrobial peptides we discovered produced damage on the bacterial cell membrane that included membrane wrinkling, cell blebbing, and leakage of cytoplasmic material. Based on these results, we concluded that the computational approach proposed for finding sequences encrypted in proteins is appropriate for the discovery of selective and non-selective antimicrobial and anticancer peptides.
Collapse
Affiliation(s)
- Geraldine Duque-Salazar
- Present address: Sciences Faculty, Biosciences School, Functional Biology Research Group, Universidad Nacional de Colombia - Sede Medellín, Carrera 65 Nro. 59A - 110, Medellín, 050034, Colombia
| | - Edward Mendez-Otalvaro
- Present address: Sciences Faculty, Biosciences School, Functional Biology Research Group, Universidad Nacional de Colombia - Sede Medellín, Carrera 65 Nro. 59A - 110, Medellín, 050034, Colombia
| | - Alberto M Ceballos-Arroyo
- Present address: Sciences Faculty, Biosciences School, Functional Biology Research Group, Universidad Nacional de Colombia - Sede Medellín, Carrera 65 Nro. 59A - 110, Medellín, 050034, Colombia.
| | - Sergio Orduz
- Present address: Sciences Faculty, Biosciences School, Functional Biology Research Group, Universidad Nacional de Colombia - Sede Medellín, Carrera 65 Nro. 59A - 110, Medellín, 050034, Colombia
| |
Collapse
|
6
|
Kapil S, Sharma V. d-Amino acids in antimicrobial peptides: a potential approach to treat and combat antimicrobial resistance. Can J Microbiol 2020; 67:119-137. [PMID: 32783775 DOI: 10.1139/cjm-2020-0142] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antimicrobial resistance is one of the leading challenges in the human healthcare segment. Advances in antimicrobial resistance have triggered exploration of natural alternatives to stabilize its seriousness. Antimicrobial peptides are small, positively charged oligopeptides that are as potent as commercially available antibiotics against a wide spectrum of organisms, such as Gram-positive bacteria, Gram-negative bacteria, viruses, and fungal strains. In addition to their antibiotic capabilities, these peptides possess anticancer activity, activate the immune response, and regulate inflammation. Peptides have distinct modes of action and fall into various categories due to their amino acid composition. Although antimicrobial peptides specifically target the bacterial cytoplasmic membrane, they can also target the cell nucleus and protein synthesis. Owing to the increasing demand for novel treatments against the threat of antimicrobial resistance, naturally synthesized peptides are a beneficial development concept. Antimicrobial peptides are pervasive and can easily be modified using de-novo synthesis technology. Antimicrobial peptides can be isolated from natural resources such as humans, plants, bacteria, and fungi. This review gives a brief overview of antimicrobial peptides and their diastereomeric composition. Other current trends, the future scope of antimicrobial peptides, and the role of d-amino acids are also discussed, with a specific emphasis on the design and development of new drugs.
Collapse
Affiliation(s)
- Shikha Kapil
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| | - Vipasha Sharma
- University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India.,University Institute of Biotechnology, Chandigarh University, Gharuan Mohali, Punjab 140413, India
| |
Collapse
|
7
|
Khalaf HS, Naglah AM, Al-Omar MA, Moustafa GO, Awad HM, Bakheit AH. Synthesis, Docking, Computational Studies, and Antimicrobial Evaluations of New Dipeptide Derivatives Based on Nicotinoylglycylglycine Hydrazide. Molecules 2020; 25:molecules25163589. [PMID: 32784576 PMCID: PMC7464391 DOI: 10.3390/molecules25163589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
Within a series of dipeptide derivatives (5–11), compound 4 was refluxed with d-glucose, d-xylose, acetylacetone, diethylmalonate, carbon disulfide, ethyl cyanoacetate, and ethyl acetoacetate which yielded 5–11, respectively. The candidates 5–11 were characterized and their biological activities were evaluated where they showed different anti-microbial inhibitory activities based on the type of pathogenic microorganisms. Moreover, to understand modes of binding, molecular docking was used of Nicotinoylglycine derivatives with the active site of the penicillin-binding protein 3 (PBP3) and sterol 14-alpha demethylase’s (CYP51), and the results, which were achieved via covalent and non-covalent docking, were harmonized with the biological activity results. Therefore, it was extrapolated that compounds 4, 7, 8, 9, and 10 had good potential to inhibit sterol 14-alpha demethylase and penicillin-binding protein 3; consequently, these compounds are possibly suitable for the development of a novel antibacterial and antifungal therapeutic drug. In addition, in silico properties of absorption, distribution, metabolism, and excretion (ADME) indicated drug likeness with low to very low oral absorption in most compounds, and undefined blood–brain barrier permeability in all compounds. Furthermore, toxicity (TOPKAT) prediction showed probability values for all carcinogenicity models were medium to pretty low for all compounds.
Collapse
Affiliation(s)
- Hemat S. Khalaf
- Chemistry Department, College of Science and Arts, Jouf University, Al Qurayyat 77425, Saudi Arabia;
- Photochemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Ahmed M. Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Correspondence: ; Tel.: +966-562003668
| | - Mohamed A. Al-Omar
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Gaber O. Moustafa
- Peptide Chemistry Department, Chemical Industries Research Division, National Research Centre, Dokki, Cairo 12622, Egypt;
- Nahda University, New Beni-Suef City, Beni-Suef 62521, Egypt
| | - Hassan M. Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industries Division, National Research Centre, Dokki, Cairo 12622, Egypt;
| | - Ahmed H. Bakheit
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
- Department of Chemistry, Faculty of Science and Technology, Al-Neelain University, Khartoum 12702, Sudan
| |
Collapse
|
8
|
Pexiganan in Combination with Nisin to Control Polymicrobial Diabetic Foot Infections. Antibiotics (Basel) 2020; 9:antibiotics9030128. [PMID: 32244862 PMCID: PMC7148459 DOI: 10.3390/antibiotics9030128] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 03/17/2020] [Accepted: 03/18/2020] [Indexed: 12/22/2022] Open
Abstract
Diabetic foot ulcers (DFUs) are major complications of Diabetes mellitus being responsible for significant morbidity and mortality. DFUs frequently become chronically infected by a complex community of bacteria, including multidrug-resistant and biofilm-producing strains of Staphylococcus aureus and Pseudomonas aeruginosa. Diabetic foot infections (DFI) are often recalcitrant to conventional antibiotics and alternative treatment strategies are urgently needed. Antimicrobial Peptides (AMPs), such as pexiganan and nisin, have been increasingly investigated and reported as effective antimicrobial agents. Here, we evaluated the antibacterial potential of pexiganan and nisin used in combination (dual-AMP) to control the growth of planktonic and biofilm co-cultures of S. aureus and P. aeruginosa clinical strains, co-isolated from a DFU. A DFU collagen three-dimensional (3D) model was used to evaluate the distribution and efficacy of AMPs locally delivered into the model. The concentration of pexiganan required to inhibit and eradicate both planktonic and biofilm-based bacterial cells was substantially reduced when used in combination with nisin. Moreover, incorporation of both AMPs in a guar gum delivery system (dual-AMP biogel) did not affect the dual-AMP antimicrobial activity. Importantly, the application of the dual-AMP biogel resulted in the eradication of the S. aureus strain from the model. In conclusion, data suggest that the local application of the dual-AMPs biogel constitutes a potential complementary therapy for the treatment of infected DFU.
Collapse
|
9
|
Bakare OO, Fadaka AO, Klein A, Pretorius A. Dietary effects of antimicrobial peptides in therapeutics. ALL LIFE 2020. [DOI: 10.1080/26895293.2020.1726826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Affiliation(s)
- Olalekan Olanrewaju Bakare
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Adewale Oluwaseun Fadaka
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashwil Klein
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| | - Ashley Pretorius
- Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
10
|
Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater 2020; 103:52-67. [PMID: 31874224 DOI: 10.1016/j.actbio.2019.12.025] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/20/2022]
Abstract
Antimicrobial peptides (AMPs) are the natural antibiotics recognized for their potent antibacterial and wound healing properties. Bare AMPs have limited activity following topical application attributable to their susceptibility to environment (hydrolysis, oxidation, photolysis), and wound (alkaline pH, proteolysis) related factors as well as minimal residence time. Therefore, the formulation of AMPs is essential to enhance stability, prolong delivery, and optimize effectiveness at the wound site. Different topical formulations of AMPs have been developed so far including nanoparticles, hydrogels, creams, ointments, and wafers to aid in controlling bacterial infection and enhance wound healing process in vivo. Herein, an overview is provided of the AMPs and current understanding of their formulations for topical wound healing applications along with suitable examples. Furthermore, future prospects for the development of effective combination AMP formulations are discussed. STATEMENT OF SIGNIFICANCE: Chronic wound infection and subsequent development of antibiotic resistance are serious clinical problems affecting millions of people worldwide. Antimicrobial peptides (AMPs) possess great potential in effectively killing the bacteria with minimal risk of resistance development. However, AMPs susceptibility to degradation following topical application limits their antimicrobial and wound healing effects. Therefore, development of an optimized topical formulation with high peptide stability and sustained AMP delivery is necessary to maximize the antimicrobial and wound healing effects. The present review provides an overview of the state-of-art in the field of topical AMP formulations for wound healing. Current developments in the field of topical AMP formulations are reviewed and future prospects for the development of effective combination AMP formulations are discussed.
Collapse
|
11
|
Santos R, Ruza D, Cunha E, Tavares L, Oliveira M. Diabetic foot infections: Application of a nisin-biogel to complement the activity of conventional antibiotics and antiseptics against Staphylococcus aureus biofilms. PLoS One 2019; 14:e0220000. [PMID: 31339915 PMCID: PMC6655664 DOI: 10.1371/journal.pone.0220000] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Accepted: 07/05/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Diabetic foot infections (DFIs) are a frequent complication of Diabetes mellitus and a major cause of nontraumatic limb amputations. The Gram-positive bacterium Staphylococcus aureus, known for its resilient biofilms and antibiotic resistant profile, is the most frequent DFI pathogen. It is urgent to develop innovative treatments for these infections, being the antimicrobial peptide (AMP) nisin a potential candidate. We have previously proposed the use of a guar gum biogel as a delivery system for nisin. Here, we evaluated the potential of the nisin-biogel to enhance the efficacy of conventional antibiotics and antiseptics against DFIs S. aureus clinical isolates. METHODS A collection of 23 S. aureus strains isolated from DFI patients, including multidrug- and methicillin-resistant strains, was used. The antimicrobial activity of the nisin-biogel was tested alone and in different combinations with the antiseptic chlorhexidine and the antibiotics clindamycin, gentamicin and vancomycin. Isolates' in vitro susceptibility to the different protocols was assessed using broth microdilution methods in order to determine their ability to inhibit and/or eradicate established S. aureus biofilms. Antimicrobials were added to the 96-well plates every 8 h to simulate a typical DFI treatment protocol. Statistical analysis was conducted using RCBD ANOVA in SPSS. RESULTS The nisin-biogel showed a high antibacterial activity against biofilms formed by DFI S. aureus. The combined protocol using nisin-biogel and chlorhexidine presented the highest efficacy in biofilm formation inhibition, significantly higher (p<0.05) than the ones presented by the antibiotics-based protocols tested. Regarding biofilm eradication, there were no significant differences (p>0.05) between the activity of the combination nisin-biogel plus chlorhexidine and the conventional antibiotic-based protocols. CONCLUSIONS Results provide a valuable contribution for the development of complementary strategies to conventional antibiotics protocols. A combined protocol including chlorhexidine and nisin-biogel could be potentially applied in medical centres, contributing for the reduction of antibiotic administration, selection pressure on DFI pathogens and resistance strains dissemination.
Collapse
Affiliation(s)
- Raquel Santos
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Diana Ruza
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Eva Cunha
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Luís Tavares
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| | - Manuela Oliveira
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
12
|
Cunha E, Trovão T, Pinheiro A, Nunes T, Santos R, Moreira da Silva J, São Braz B, Tavares L, Veiga AS, Oliveira M. Potential of two delivery systems for nisin topical application to dental plaque biofilms in dogs. BMC Vet Res 2018; 14:375. [PMID: 30497466 PMCID: PMC6267012 DOI: 10.1186/s12917-018-1692-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Periodontal disease (PD) is caused by the development of a microbial biofilm (dental plaque) in the periodontium, affecting approximately 80% of dogs. Several bacterial species present in the canine oral cavity can be implicated in the development of this disease, including Enterococcus spp. To decrease antibiotic administration, a possible control strategy for dog's enterococcal PD may involve the use of the antimicrobial peptide (AMP) nisin. Nisin's inhibitory activity was evaluated against a collection of previously characterized enterococci obtained from the oral cavity of dogs with PD (n = 20), as well as the potential of a guar-gum gel and a veterinary toothpaste as topical delivery systems for this AMP. The Minimum Inhibitory (MIC) and Bactericidal Concentrations (MBC) and the Minimum Biofilm Eradication (MBEC) and Inhibitory Concentrations (MBIC) were determined for nisin and for the supplemented guar-gum gel. For the supplemented veterinary toothpaste an agar-well diffusion assay was used to evaluate its inhibitory potential. RESULTS Nisin was effective against all isolates. Independently of being or not incorporated in the guar-gum gel, its inhibitory activity on biofilms was higher, with MBIC (12.46 ± 5.16 and 13.60 ± 4.31 μg/mL, respectively) and MBEC values (21.87 ± 11.33 and 42.34 ± 16.61 μg/mL) being lower than MIC (24.61 ± 4.64 and 14.90 ± 4.10 μg/mL) and MBC (63.09 ± 13.22 and 66.63 ± 19.55 μg/mL) values. The supplemented toothpaste was also effective, showing inhibitory activity against 95% of the isolates. CONCLUSIONS The inhibitory ability of nisin when incorporated in the two delivery systems was maintained or increased, demonstrating the potential of these supplemented vehicles to be applied to PD control in dogs.
Collapse
Affiliation(s)
- Eva Cunha
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Tiago Trovão
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Ana Pinheiro
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Telmo Nunes
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Raquel Santos
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Jorge Moreira da Silva
- Virbac de Portugal Laboratórios, Lda, Rua do Centro Empresarial, Quinta da Beloura, 2710-693, Sintra, Portugal
| | - Berta São Braz
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Luís Tavares
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Manuela Oliveira
- CIISA - Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477, Lisboa, Portugal.
| |
Collapse
|
13
|
O'Driscoll NH, Cushnie TPT, Matthews KH, Lamb AJ. Colistin causes profound morphological alteration but minimal cytoplasmic membrane perforation in populations of Escherichia coli and Pseudomonas aeruginosa. Arch Microbiol 2018; 200:793-802. [PMID: 29423561 PMCID: PMC6004271 DOI: 10.1007/s00203-018-1485-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/18/2022]
Abstract
Whilst colistin (polymyxin E) represents the last mainstream treatment option for multidrug-resistant Gram-negative pathogens, details of its mechanism of action remain to be fully resolved. In this study, the effects of sub-inhibitory, inhibitory-bactericidal, and supra-bactericidal levels of colistin on the membrane integrity and morphology of Escherichia coli and Pseudomonas aeruginosa were investigated using potassium loss, flow cytometry, and scanning electron microscopy (SEM). Supra-bactericidal colistin concentrations induced just 4-12% intracellular potassium loss from bacteria after 24 h. Flow cytometry data suggested colistin might alter cell arrangement, and SEM confirmed the antibiotic causes bacterial aggregation. Filamentation was not detected in either species at any concentration or time-point up to 24 h. These results argue against the hypotheses that colistin kills bacteria by puncturing the cytoplasmic membrane or disrupting DNA synthesis. The colistin-induced bacterial aggregation detected has implications for the interpretation of MBC, time-kill, and other test results obtained with this antibiotic.
Collapse
Affiliation(s)
- Noëlle H O'Driscoll
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| | - T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand
| | - Kerr H Matthews
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| | - Andrew J Lamb
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK.
- Graduate School, Robert Gordon University, Health and Social Care Building, Garthdee Road, Aberdeen, AB10 7QG, UK.
| |
Collapse
|
14
|
Hon KL, Kung JSC, Ng WGG, Leung TF. Emollient treatment of atopic dermatitis: latest evidence and clinical considerations. Drugs Context 2018; 7:212530. [PMID: 29692852 PMCID: PMC5908267 DOI: 10.7573/dic.212530] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/11/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Aim To review current classes of emollients in the market, their clinical efficacy in atopic dermatitis (AD) and considerations for choice of an emollient. Methods PubMed Clinical Queries under Clinical Study Categories (with Category limited to Therapy and Scope limited to Narrow) and Systematic Reviews were used as the search engine. Keywords of ‘emollient or moisturizer’ and ‘atopic dermatitis’ were used. Overview of findings Using the keywords of ‘emollient’ and ‘atopic dermatitis’, there were 105 and 36 hits under Clinical Study Categories (with Category limited to Therapy and Scope limited to Narrow) and Systematic Reviews, respectively. Plant-derived products, animal products and special ingredients were discussed. Selected proprietary products were tabulated. Conclusions A number of proprietary emollients have undergone trials with clinical data available on PubMed-indexed journals. Most moisturizers showed some beneficial effects, but there was generally no evidence that one moisturizer is superior to another. Choosing an appropriate emollient for AD patients would improve acceptability and adherence for emollient treatment. Physician’s recommendation is the primary consideration for patients when selecting a moisturizer/emollient; therefore, doctors should provide evidence-based information about these emollients.
Collapse
Affiliation(s)
- Kam Lun Hon
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | | | - Wing Gi Gigi Ng
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| | - Ting Fan Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Hong Kong
| |
Collapse
|
15
|
In silico design of polycationic antimicrobial peptides active against Pseudomonas aeruginosa and Staphylococcus aureus. Antonie van Leeuwenhoek 2018; 111:1871-1882. [DOI: 10.1007/s10482-018-1080-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 03/31/2018] [Indexed: 12/31/2022]
|
16
|
Recent Advances in Antibacterial and Antiendotoxic Peptides or Proteins from Marine Resources. Mar Drugs 2018; 16:md16020057. [PMID: 29439417 PMCID: PMC5852485 DOI: 10.3390/md16020057] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 01/23/2018] [Accepted: 02/02/2018] [Indexed: 12/17/2022] Open
Abstract
Infectious diseases caused by Gram-negative bacteria and sepsis induced by lipopolysaccharide (LPS) pose a major threat to humans and animals and cause millions of deaths each year. Marine organisms are a valuable resource library of bioactive products with huge medicinal potential. Among them, antibacterial and antiendotoxic peptides or proteins, which are composed of metabolically tolerable residues, are present in many marine species, including marine vertebrates, invertebrates and microorganisms. A lot of studies have reported that these marine peptides and proteins or their derivatives exhibit potent antibacterial activity and antiendotoxic activity in vitro and in vivo. However, their categories, heterologous expression in microorganisms, physicochemical factors affecting peptide or protein interactions with bacterial LPS and LPS-neutralizing mechanism are not well known. In this review, we highlight the characteristics and anti-infective activity of bifunctional peptides or proteins from marine resources as well as the challenges and strategies for further study.
Collapse
|
17
|
Xia X, Cheng L, Zhang S, Wang L, Hu J. The role of natural antimicrobial peptides during infection and chronic inflammation. Antonie van Leeuwenhoek 2017; 111:5-26. [PMID: 28856473 DOI: 10.1007/s10482-017-0929-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/15/2017] [Indexed: 01/12/2023]
Abstract
Natural antimicrobial peptides (AMPs), a family of small polypeptides that are produced by constitutive or inducible expression in organisms, are integral components of the host innate immune system. In addition to their broad-spectrum antibacterial activity, natural AMPs also have many biological activities against fungi, viruses and parasites. Natural AMPs exert multiple immunomodulatory roles that may predominate under physiological conditions where they lose their microbicidal properties in serum and tissue environments. Increased drug resistance among microorganisms is occurring far more quickly than the discovery of new antibiotics. Natural AMPs have shown promise as 'next generation antibiotics' due to their broad-spectrum curative effects, low toxicity, the fact that they are not residual in animals, and the low rates of resistance exhibited by many pathogens. Many types of synthetic AMPs are currently being tested in clinical trials for the prevention and treatment of various diseases such as chemotherapy-associated infections, diabetic foot ulcers, catheter-related infections, and other conditions. Here, we provide an overview of the types and functions of natural AMPs and their role in combating microorganisms and different infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Xiaojing Xia
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Likun Cheng
- Shandong Binzhou Animal Science and Veterinary Medicine Academy, Binzhou, 256600, People's Republic of China
| | - Shouping Zhang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Lei Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China
| | - Jianhe Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, No. 90, Hualan Street, Xinxiang, 453003, People's Republic of China.
| |
Collapse
|
18
|
NP108, an Antimicrobial Polymer with Activity against Methicillin- and Mupirocin-Resistant Staphylococcus aureus. Antimicrob Agents Chemother 2017; 61:AAC.00502-17. [PMID: 28607014 PMCID: PMC5571353 DOI: 10.1128/aac.00502-17] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 06/03/2017] [Indexed: 02/04/2023] Open
Abstract
Staphylococcus aureus is a clinically significant human pathogen that causes infectious diseases ranging from skin and soft tissue infections (SSTI) and health care-associated infections (HAI) to potentially fatal bacteremia and endocarditis. Nasal carriage of S. aureus, especially for persistent carriage, is associated with an increased risk of subsequent infection, particularly nosocomial and surgical site infections (SSI), usually via autoinfection. NP108 is a cationic antimicrobial polymer composed of generally recognized as safe (GRAS) amino acid building blocks. NP108 is broad spectrum and rapidly bactericidal (3-log kill in ≤3 h), killing bacteria by membrane disruption and cell lysis. NP108, contrary to many antibiotics, shows equally effective antimicrobial activity against a variety of S. aureus (MIC100 = 8 to 500 mg/liter) and S. epidermidis (MIC100 = 4 to 8 mg/liter) isolates, whether exponentially growing or in stationary phase. NP108 is antimicrobially active under nutrient-limiting conditions similar to those found in the anterior nares (MIC100 = 8 mg/liter) and kills antibiotic-resilient small colony variants (MIC100 = 32 mg/liter) and S. aureus biofilms (prevention, MIC100 = 1 to 4 mg/liter; eradication, MIC100 ≥ 31.25 mg/liter). NP108 is active against isolates of S. aureus resistant to the current standard-of-care decolonization agent, mupirocin, with no significant increase in the MIC100 NP108 is water soluble and has been formulated into compatible aqueous gel vehicles for human use in which antimicrobial efficacy is retained (2.0% [wt/vol]). NP108 is a potential nonantibiotic antimicrobial alternative to antibiotics for the nasal decolonization of S. aureus, with clear advantages in its mechanism of action over the existing gold standard, mupirocin.
Collapse
|
19
|
Affiliation(s)
- Ryan J Blower
- a School of Systems Biology, George Mason University , Manassas , VA , USA
| | - Serguei G Popov
- a School of Systems Biology, George Mason University , Manassas , VA , USA
| | - Monique L van Hoek
- a School of Systems Biology, George Mason University , Manassas , VA , USA
| |
Collapse
|
20
|
Cushnie TPT, O'Driscoll NH, Lamb AJ. Morphological and ultrastructural changes in bacterial cells as an indicator of antibacterial mechanism of action. Cell Mol Life Sci 2016; 73:4471-4492. [PMID: 27392605 PMCID: PMC11108400 DOI: 10.1007/s00018-016-2302-2] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Revised: 06/21/2016] [Accepted: 06/28/2016] [Indexed: 01/20/2023]
Abstract
Efforts to reduce the global burden of bacterial disease and contend with escalating bacterial resistance are spurring innovation in antibacterial drug and biocide development and related technologies such as photodynamic therapy and photochemical disinfection. Elucidation of the mechanism of action of these new agents and processes can greatly facilitate their development, but it is a complex endeavour. One strategy that has been popular for many years, and which is garnering increasing interest due to recent technological advances in microscopy and a deeper understanding of the molecular events involved, is the examination of treated bacteria for changes to their morphology and ultrastructure. In this review, we take a critical look at this approach. Variables affecting antibacterial-induced alterations are discussed first. These include characteristics of the test organism (e.g. cell wall structure) and incubation conditions (e.g. growth medium osmolarity). The main body of the review then describes the different alterations that can occur. Micrographs depicting these alterations are presented, together with information on agents that induce the change, and the sequence of molecular events that lead to the change. We close by highlighting those morphological and ultrastructural changes which are consistently induced by agents sharing the same mechanism (e.g. spheroplast formation by peptidoglycan synthesis inhibitors) and explaining how changes that are induced by multiple antibacterial classes (e.g. filamentation by DNA synthesis inhibitors, FtsZ disruptors, and other types of agent) can still yield useful mechanistic information. Lastly, recommendations are made regarding future study design and execution.
Collapse
Affiliation(s)
- T P Tim Cushnie
- Faculty of Medicine, Mahasarakham University, Khamriang, Kantarawichai, Maha Sarakham, 44150, Thailand.
| | - Noëlle H O'Driscoll
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| | - Andrew J Lamb
- School of Pharmacy and Life Sciences, Robert Gordon University, Sir Ian Wood Building, Garthdee Road, Aberdeen, AB10 7GJ, UK
| |
Collapse
|
21
|
Chaparro E, da Silva P. Lacrain: the first antimicrobial peptide from the body extract of the Brazilian centipede Scolopendra viridicornis. Int J Antimicrob Agents 2016; 48:277-85. [DOI: 10.1016/j.ijantimicag.2016.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 04/20/2016] [Accepted: 05/21/2016] [Indexed: 01/28/2023]
|
22
|
Santos R, Gomes D, Macedo H, Barros D, Tibério C, Veiga AS, Tavares L, Castanho M, Oliveira M. Guar gum as a new antimicrobial peptide delivery system against diabetic foot ulcers Staphylococcus aureus isolates. J Med Microbiol 2016; 65:1092-1099. [PMID: 27498987 DOI: 10.1099/jmm.0.000329] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Diabetic patients frequently develop diabetic foot ulcers (DFUs), particularly those patients vulnerable to Staphylococcus aureus opportunistic infections. It is urgent to find new treatments for bacterial infections. The antimicrobial peptide (AMP) nisin is a potential candidate, mainly due to its broad spectrum of action against pathogens. Considering that AMP can be degraded or inactivated before reaching its target at therapeutic concentrations, it is mandatory to establish effective AMP delivery systems, with the natural polysaccharide guar gum being one of the most promising. We analysed the antimicrobial potential of nisin against 23 S. aureus DFU biofilm-producing isolates. Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC) and minimum biofilm eradication concentration (MBEC) were determined for nisin diluted in HCl and incorporated in guar gum gel. Statistical analysis was performed using the Wilcoxon matched-pair test. Nisin was effective against all isolates, including some multidrug-resistant clinical isolates, independent of whether it is incorporated in guar gum. While differences among MIC, MBC and MBIC values were observed for HCl- and guar gum- nisin, no significant differences were found between MBEC values. Inhibitory activity of both systems seems to differ only twofold, which does not compromise guar gum gel efficiency as a delivery system. Our results highlight the potential of nisin as a substitute for or complementary therapy to current antibiotics used for treating DFU infections, which is extremely relevant considering the increase in multidrug-resistant bacteria dissemination. The guar gum gel represents an alternative, practical and safe delivery system for AMPs, allowing the development of novel topical therapies as treatments for bacterial skin infections.
Collapse
Affiliation(s)
- Raquel Santos
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Diana Gomes
- ISPA Instituto Universitário SA, Lisbon, Portugal
| | - Hermes Macedo
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Diogo Barros
- Centro de Estudos do Ambiente e do Mar, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina Tibério
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salomé Veiga
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Luís Tavares
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| | - Miguel Castanho
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuela Oliveira
- Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
23
|
Boateng J, Catanzano O. Advanced Therapeutic Dressings for Effective Wound Healing--A Review. J Pharm Sci 2015; 104:3653-3680. [PMID: 26308473 DOI: 10.1002/jps.24610] [Citation(s) in RCA: 496] [Impact Index Per Article: 55.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/20/2015] [Accepted: 07/21/2015] [Indexed: 12/15/2022]
Abstract
Advanced therapeutic dressings that take active part in wound healing to achieve rapid and complete healing of chronic wounds is of current research interest. There is a desire for novel strategies to achieve expeditious wound healing because of the enormous financial burden worldwide. This paper reviews the current state of wound healing and wound management products, with emphasis on the demand for more advanced forms of wound therapy and some of the current challenges and driving forces behind this demand. The paper reviews information mainly from peer-reviewed literature and other publicly available sources such as the US FDA. A major focus is the treatment of chronic wounds including amputations, diabetic and leg ulcers, pressure sores, and surgical and traumatic wounds (e.g., accidents and burns) where patient immunity is low and the risk of infections and complications are high. The main dressings include medicated moist dressings, tissue-engineered substitutes, biomaterials-based biological dressings, biological and naturally derived dressings, medicated sutures, and various combinations of the above classes. Finally, the review briefly discusses possible prospects of advanced wound healing including some of the emerging physical approaches such as hyperbaric oxygen, negative pressure wound therapy and laser wound healing, in routine clinical care.
Collapse
Affiliation(s)
- Joshua Boateng
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK.
| | - Ovidio Catanzano
- Department of Pharmaceutical, Chemical and Environmental Sciences, Faculty of Engineering and Science, University of Greenwich, Chatham Maritime, Kent ME4 4TB, UK
| |
Collapse
|
24
|
Blower RJ, Barksdale SM, van Hoek ML. Snake Cathelicidin NA-CATH and Smaller Helical Antimicrobial Peptides Are Effective against Burkholderia thailandensis. PLoS Negl Trop Dis 2015. [PMID: 26196513 PMCID: PMC4510350 DOI: 10.1371/journal.pntd.0003862] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Burkholderia thailandensis is a Gram-negative soil bacterium used as a model organism for B. pseudomallei, the causative agent of melioidosis and an organism classified category B priority pathogen and a Tier 1 select agent for its potential use as a biological weapon. Burkholderia species are reportedly “highly resistant” to antimicrobial agents, including cyclic peptide antibiotics, due to multiple resistance systems, a hypothesis we decided to test using antimicrobial (host defense) peptides. In this study, a number of cationic antimicrobial peptides (CAMPs) were tested in vitro against B. thailandensis for both antimicrobial activity and inhibition of biofilm formation. Here, we report that the Chinese cobra (Naja atra) cathelicidin NA-CATH was significantly antimicrobial against B. thailandensis. Additional cathelicidins, including the human cathelicidin LL-37, a sheep cathelicidin SMAP-29, and some smaller ATRA peptide derivatives of NA-CATH were also effective. The D-enantiomer of one small peptide (ATRA-1A) was found to be antimicrobial as well, with EC50 in the range of the L-enantiomer. Our results also demonstrate that human alpha-defensins (HNP-1 & -2) and a short beta-defensin-derived peptide (Peptide 4 of hBD-3) were not bactericidal against B. thailandensis. We also found that the cathelicidin peptides, including LL-37, NA-CATH, and SMAP-29, possessed significant ability to prevent biofilm formation of B. thailandensis. Additionally, we show that LL-37 and its D-enantiomer D-LL-37 can disperse pre-formed biofilms. These results demonstrate that although B. thailandensis is highly resistant to many antibiotics, cyclic peptide antibiotics such as polymyxin B, and defensing peptides, some antimicrobial peptides including the elapid snake cathelicidin NA-CATH exert significant antimicrobial and antibiofilm activity towards B. thailandensis. Burkholderia species such as B. pseudomallei, which causes melioidosis, and the model organism B. thailandensis are extremely resistant to antibiotics, including cyclic peptide antibiotics such as polymyxin B. Treatment for Burkholderia infections is impeded by this resistance, and new approaches are needed. We hypothesized that the cathelicidin NA-CATH from the Chinese cobra, Naja atra, and smaller derivative peptides (ATRA peptides) may have antimicrobial activity against Burkholderia. We therefore tested the bactericidal effects of the cathelicidin and its derivative peptides. We also wanted to determine whether the antimicrobial peptides exert anti-biofilm activity, although the role of biofilm as a critical virulence factor of Burkholderia has not yet been established. We found that the peptide ATRA-1A, as well as the stereo-isomer D-ATRA-1A, were able to kill B. thailandensis, and the full-length snake cathelicidin NA-CATH was able to both kill B. thailandensis and inhibit its biofilm formation, unlike the human-alpha defensin peptides HNP-1 and HNP-2, and the small peptide derived from hBD3. These results show that the NA-CATH antimicrobial peptide possess bactericidal and anti-biofilm activity against B. thailandensis, and suggest that these compounds should be tested for their effect against the more virulent strains of Burkholderia.
Collapse
Affiliation(s)
- Ryan J. Blower
- George Mason University, School of Systems Biology, Manassas, Virginia, United States of America
| | - Stephanie M. Barksdale
- George Mason University, School of Systems Biology, Manassas, Virginia, United States of America
| | - Monique L. van Hoek
- George Mason University, School of Systems Biology, Manassas, Virginia, United States of America
- George Mason University, National Center for Biodefense and Infectious Diseases, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|
25
|
Vijeetha T, Balakrishna M, Karuna MSL, Surya Koppeswara Rao BV, Prasad RBN, Kumar KP, Surya Narayana Murthy U. Synthesis and Anti-microbial Activity of Novel Phosphatidylethanolamine-N-amino Acid Derivatives. J Oleo Sci 2015; 64:705-12. [PMID: 25994558 DOI: 10.5650/jos.ess15063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The study involved synthesis of five novel amino acid derivatives of phosphatidylethanolamine isolated from egg yolk lecithin employing a three step procedure i) N-protection of L-amino acids with BOC anhydride in alkaline medium ii) condensation of - CO2H group of N-protected amino acid with free -NH2 of PE by a peptide linkage and iii) deprotection of N-protected group of amino acids to obtain phosphatidylethanolamine-N-amino acid derivatives in 60-75% yield. The five L-amino acids used were L glycine, L-valine, L-leucine, L-isoleucine and L-phenylalanine. The amino acid derivatives were screened for anti-baterial activity against B. subtilis, S. aureus, P. aeroginosa and E. coli taking Streptomycin as reference compound and anti-fungal activity against C. albicans, S. cervisiae, A. niger taking AmphotericinB as reference compound. All the amino acid derivatives exhibited extraordinary anti-bacterial activities about 3 folds or comparable to Streptomycin and moderate or no anti-fungal activity against Amphotericin-B.
Collapse
Affiliation(s)
- Tadla Vijeetha
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology
| | | | | | | | | | | | | |
Collapse
|
26
|
O’Driscoll NH, Labovitiadi O, Cushnie TPT, Matthews KH, Lamb AJ. Potassium Loss from Chlorhexidine-Treated Bacterial Pathogens is Time- and Concentration-Dependent and Variable Between Species. Curr Microbiol 2013; 68:6-11. [DOI: 10.1007/s00284-013-0433-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/30/2013] [Indexed: 11/29/2022]
|