1
|
Marchetti A, Kupka D, Senatore VG, Bártová Z, Branduardi P, Hagarová L, Hredzák S, Lotti M. Iron bioleaching and polymers accumulation by an extreme acidophilic bacterium. Arch Microbiol 2024; 206:275. [PMID: 38775940 PMCID: PMC11111502 DOI: 10.1007/s00203-024-04005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
In many European regions, both local metallic and non-metallic raw materials are poorly exploited due to their low quality and the lack of technologies to increase their economic value. In this context, the development of low cost and eco-friendly approaches, such as bioleaching of metal impurities, is crucial. The acidophilic strain Acidiphilium sp. SJH reduces Fe(III) to Fe(II) by coupling the oxidation of an organic substrate to the reduction of Fe(III) and can therefore be applied in the bioleaching of iron impurities from non-metallic raw materials. In this work, the physiology of Acidiphilium sp. SJH and the reduction of iron impurities from quartz sand and its derivatives have been studied during growth on media supplemented with various carbon sources and under different oxygenation conditions, highlighting that cell physiology and iron reduction are tightly coupled. Although the organism is known to be aerobic, maximum bioleaching performance was obtained by cultures cultivated until the exponential phase of growth under oxygen limitation. Among carbon sources, glucose has been shown to support faster biomass growth, while galactose allowed highest bioleaching. Moreover, Acidiphilium sp. SJH cells can synthesise and accumulate Poly-β-hydroxybutyrate (PHB) during the process, a polymer with relevant application in biotechnology. In summary, this work gives an insight into the physiology of Acidiphilium sp. SJH, able to use different carbon sources and to synthesise a technologically relevant polymer (PHB), while removing metals from sand without the need to introduce modifications in the process set up.
Collapse
Affiliation(s)
- Alessandro Marchetti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Daniel Kupka
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | | | - Zuzana Bártová
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy
| | - Lenka Hagarová
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Slavomír Hredzák
- Institute of Geotechnics of the Slovak Academy of Sciences, Watsonova 45, Kosice, 040 01, Slovakia
| | - Marina Lotti
- Department of Biotechnology and Biosciences, State University of Milano-Bicocca, Milano, Italy.
| |
Collapse
|
2
|
González E, Vera F, Scott F, Guerrero C, Bolívar JM, Aroca G, Muñoz JÁ, Ladero M, Santos VE. Acidophilic heterotrophs: basic aspects and technological applications. Front Microbiol 2024; 15:1374800. [PMID: 38827148 PMCID: PMC11141062 DOI: 10.3389/fmicb.2024.1374800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 06/04/2024] Open
Abstract
Acidophiles comprise a group of microorganisms adapted to live in acidic environments. Despite acidophiles are usually associated with an autotrophic metabolism, more than 80 microorganisms capable of utilizing organic matter have been isolated from natural and man-made environments. The ability to reduce soluble and insoluble iron compounds has been described for many of these species and may be harnessed to develop new or improved mining processes when oxidative bioleaching is ineffective. Similarly, as these microorganisms grow in highly acidic media and the chances of contamination are reduced by the low pH, they may be employed to implement robust fermentation processes. By conducting an extensive literature review, this work presents an updated view of basic aspects and technological applications in biomining, bioremediation, fermentation processes aimed at biopolymers production, microbial electrochemical systems, and the potential use of extremozymes.
Collapse
Affiliation(s)
- Ernesto González
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Fernando Vera
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Felipe Scott
- Faculty of Engineering and Applied Sciences, Universidad de Los Andes, Santiago, Chile
| | - Cecilia Guerrero
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Juan M. Bolívar
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Germán Aroca
- School of Biochemical Engineering, Faculty of Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Jesús Ángel Muñoz
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Miguel Ladero
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| | - Victoria E. Santos
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Madrid, Spain
| |
Collapse
|
3
|
González E, Zuleta C, Zamora G, Maturana N, Ponce B, Rivero MV, Rodríguez A, Soto JP, Scott F, Díaz-Barrera Á. Production of poly (3-hydroxybutyrate) and extracellular polymeric substances from glycerol by the acidophile Acidiphilium cryptum. Extremophiles 2023; 27:30. [PMID: 37847335 DOI: 10.1007/s00792-023-01313-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023]
Abstract
Acidiphilium cryptum is an acidophilic, heterotrophic, and metallotolerant bacteria able to use dissolved oxygen or Fe(III) as an electron sink. The ability of this extremophile to accumulate poly(3-hydroxybutyrate) (PHB) and secrete extracellular polymeric substances (EPS) has also been reported. Hence, the aim of this work is to characterize the production of PHB and EPS by the wild strain DSM2389 using glycerol in shaken flasks and bioreactor. Results showed that maximum PHB accumulation (37-42% w/w) was obtained using glycerol concentrations of 9 and 15 g L-1, where maximum dry cell weight titers reached 3.6 and 3.9 g L-1, respectively. The culture in the bioreactor showed that PHB accumulation takes place under oxygen limitation, while the redox potential of the culture medium could be used for online monitoring of the PHB production. Recovered EPS was analyzed by Fourier-transform infrared spectroscopy and subjected to gas chromatography-mass spectrometry after cleavage and derivatization steps. These analyses showed the presence of sugars which were identified as mannose, rhamnose and glucose, in a proportion near to 3.2:2.3:1, respectively. Since glycerol had not been used in previous works, these findings suggest the potential of A. cryptum to produce biopolymers from this compound at a large scale with a low risk of microbial contamination due to the low pH of the fermentation process.
Collapse
Affiliation(s)
- Ernesto González
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile.
- Department of Chemical and Materials Engineering, Faculty of Chemistry, Universidad Complutense de Madrid, Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Camila Zuleta
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Guiselle Zamora
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Nataly Maturana
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - Belén Ponce
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| | - María Virginia Rivero
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Alberto Rodríguez
- Polymer Biotechnology Lab, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), Ramiro de Maeztu 9, 28040, Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics Towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Juan Pablo Soto
- Instituto de Química, Pontificia Universidad Católica de Valparaíso, Av. Universidad 330, Curauma, Valparaíso, Chile
| | - Felipe Scott
- Green Technologies Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de los Andes, Av. Mons. Álvaro del Portillo, Las Condes, 12455, Santiago, Chile
| | - Álvaro Díaz-Barrera
- Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso, Av. Brasil, 2085, Valparaíso, Chile
| |
Collapse
|
4
|
Unraveling the Central Role of Sulfur-Oxidizing Acidiphilium multivorum LMS in Industrial Bioprocessing of Gold-Bearing Sulfide Concentrates. Microorganisms 2021; 9:microorganisms9050984. [PMID: 34062882 PMCID: PMC8147356 DOI: 10.3390/microorganisms9050984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Acidiphilium multivorum LMS is an acidophile isolated from industrial bioreactors during the processing of the gold-bearing pyrite-arsenopyrite concentrate at 38–42 °C. Most strains of this species are obligate organoheterotrophs that do not use ferrous iron or reduced sulfur compounds as energy sources. However, the LMS strain was identified as one of the predominant sulfur oxidizers in acidophilic microbial consortia. In addition to efficient growth under strictly heterotrophic conditions, the LMS strain proved to be an active sulfur oxidizer both in the presence or absence of organic compounds. Interestingly, Ac. multivorum LMS was able to succeed more common sulfur oxidizers in microbial populations, which indicated a previously underestimated role of this bacterium in industrial bioleaching operations. In this study, the first draft genome of the sulfur-oxidizing Ac. multivorum was sequenced and annotated. Based on the functional genome characterization, sulfur metabolism pathways were reconstructed. The LMS strain possessed a complicated multi-enzyme system to oxidize elemental sulfur, thiosulfate, sulfide, and sulfite to sulfate as the final product. Altogether, the phenotypic description and genome analysis unraveled a crucial role of Ac. multivorum in some biomining processes and revealed unique strain-specific characteristics, including the ars genes conferring arsenic resistance, which are similar to those of phylogenetically distinct microorganisms.
Collapse
|
5
|
Li L, Liu Z, Zhang M, Meng D, Liu X, Wang P, Li X, Jiang Z, Zhong S, Jiang C, Yin H. Insights into the Metabolism and Evolution of the Genus Acidiphilium, a Typical Acidophile in Acid Mine Drainage. mSystems 2020; 5:e00867-20. [PMID: 33203689 PMCID: PMC7677001 DOI: 10.1128/msystems.00867-20] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023] Open
Abstract
Here, we report three new Acidiphilium genomes, reclassified existing Acidiphilium species, and performed the first comparative genomic analysis on Acidiphilium in an attempt to address the metabolic potential, ecological functions, and evolutionary history of the genus Acidiphilium In the genomes of Acidiphilium, we found an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic expansion, including genes conferring photosynthesis (puf, puh), CO2 assimilation (rbc), capacity for methane metabolism (mmo, mdh, frm), nitrogen source utilization (nar, cyn, hmp), sulfur compound utilization (sox, psr, sqr), and multiple metal and osmotic stress resistance capacities (czc, cop, ect). Additionally, the predicted donors of horizontal gene transfer were present in a cooccurrence network of Acidiphilium Genome-scale positive selection analysis revealed that 15 genes contained adaptive mutations, most of which were multifunctional and played critical roles in the survival of extreme conditions. We proposed that Acidiphilium originated in mild conditions and adapted to extreme environments such as acidic mineral sites after the acquisition of many essential functions.IMPORTANCE Extremophiles, organisms that thrive in extreme environments, are key models for research on biological adaption. They can provide hints for the origin and evolution of life, as well as improve the understanding of biogeochemical cycling of elements. Extremely acidophilic bacteria such as Acidiphilium are widespread in acid mine drainage (AMD) systems, but the metabolic potential, ecological functions, and evolutionary history of this genus are still ambiguous. Here, we sequenced the genomes of three new Acidiphilium strains and performed comparative genomic analysis on this extremely acidophilic bacterial genus. We found in the genomes of Acidiphilium an abundant repertoire of horizontally transferred genes (HTGs) contributing to environmental adaption and metabolic ability expansion, as indicated by phylogenetic reconstruction and gene context comparison. This study has advanced our understanding of microbial evolution and biogeochemical cycling in extreme niches.
Collapse
Affiliation(s)
- Liangzhi Li
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Zhenghua Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Min Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Delong Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| | - Pei Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Xiutong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhen Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuiping Zhong
- College of Zijin Mining, Fuzhou University, Fuzhou, China
- National Key Laboratory of Comprehensive Utilization of Low-Grade Refractory Gold Ores, Shanghang, China
| | - Chengying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Huaqun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, China
| |
Collapse
|