1
|
Liu Y, Wang C, Xie L, Du S, Ding L, Cui Y, Chen R, Zhang J, Wang W, Liu X, Wang Y, Chen S, Tan T, Zhao Q, Yin L, Li C, Chen Y, Ding T. Metagenomics analysis identifies oral Streptococcus as potential biomarkers for nasopharyngeal carcinoma. J Genet Genomics 2024; 51:363-366. [PMID: 37977508 DOI: 10.1016/j.jgg.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/19/2023]
Affiliation(s)
- Yanmin Liu
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Chengtao Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Lixiang Xie
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Shuling Du
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Li Ding
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Ying Cui
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Runzhi Chen
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Jingxiang Zhang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Wan Wang
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Xi Liu
- Department of Infectious Diseases, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yan Wang
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shiyan Chen
- Department of Endocrinology & Metabolism, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Tian Tan
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Qiaochu Zhao
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Limei Yin
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China
| | - Chunwei Li
- Department of Otolaryngology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yong Chen
- Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China; Key Laboratory of Tropical Disease Control (Sun Yat-sen University), Ministry of Education, Guangzhou, Guangdong 510080, China.
| |
Collapse
|
2
|
Yun SY, Lee Y, Hong J, Kim DC, Lee H, Yong D, Lim YK, Kook JK, Lee K. Identification of Fusobacterium Species Using Matrix-Assisted Laser Desorption/Ionization-Time-of-Flight Mass Spectrometry by Updating ASTA CoreDB. Yonsei Med J 2022; 63:1138-1143. [PMID: 36444550 PMCID: PMC9760896 DOI: 10.3349/ymj.2022.0271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/14/2022] [Accepted: 10/20/2022] [Indexed: 11/22/2022] Open
Abstract
PURPOSE Fusobacterium species can cause infections, and associations with cancer are being increasingly reported. As their clinical significance differs, accurate identification of individual species is important. However, matrix-assisted laser desorption/ionization-time of flight mass spectrometry has not been found to be effective in identifying Fusobacterium species in previous studies. In this study, we aimed to improve the accuracy and efficacy of identifying Fusobacterium species in clinical laboratories. MATERIALS AND METHODS In total, 229 Fusobacterium isolates were included in this study. All isolates were identified at the species level based on nucleotide sequences of the 16S ribosomal RNA gene and/or DNA-dependent RNA polymerase β-subunit gene (rpoB). Where necessary, isolates were identified based on whole genome sequences. Among them, 47 isolates were used for updating the ASTA database, and 182 isolates were used for the validation of Fusobacterium spp. identification. RESULTS Fusobacterium isolates used for validation (182/182) were correctly identified at the genus level, and most (180/182) were correctly identified at the species level using the ASTA MicroIDSys system. Most of the F. nucleatum isolates (74/75) were correctly identified at the subspecies level. CONCLUSION The updated ASTA MicroIDSys system can identify nine species of Fusobacterium and four subspecies of F. nucleatum in good agreement. This tool can be routinely used in clinical microbiology laboratories to identify Fusobacterium species and serve as a springboard for future research.
Collapse
Affiliation(s)
- Shin Young Yun
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yunhee Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Juwon Hong
- R&D Center, NOSQUEST Inc., Yongin, Korea
| | | | - Hyukmin Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea.
| | - Dongeun Yong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
- Seoul Clinical Laboratories Academy, Yongin, Korea
| |
Collapse
|
3
|
Development of the First Tractable Genetic System for Parvimonas micra, a Ubiquitous Pathobiont in Human Dysbiotic Disease. Microbiol Spectr 2022; 10:e0046522. [PMID: 35416697 PMCID: PMC9045310 DOI: 10.1128/spectrum.00465-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Parvimonas micra is a Gram-positive obligate anaerobe and a typical member of the human microbiome. P. micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with the development of multiple types of malignant tumors. Despite its strong association with disease, surprisingly little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. To address this problem, we directly isolated a collection of P. micra strains from odontogenic abscess clinical specimens and then screened these isolates for natural competence. Amazingly, all of the P. micra clinical isolates exhibited various levels of natural competence, including the reference strain ATCC 33270. By exploiting this ability, we were able to employ cloning-independent methodologies to engineer and complement a variety of targeted chromosomal genetic mutations directly within low-passage-number clinical isolates. To develop a tractable genetic system for P. micra, we first adapted renilla-based bioluminescence for highly sensitive reporter studies. This reporter system was then applied for the development of the novel Theo+ theophylline-inducible riboswitch for tunable gene expression studies over a broad dynamic range. Finally, we demonstrate the feasibility of generating mariner-based transposon sequencing (Tn-seq) libraries for forward genetic screening in P. micra. With the availability of a highly efficient transformation protocol and the current suite of genetic tools, P. micra should now be considered a fully genetically tractable organism suitable for molecular genetic research. The methods presented here provide a clear path to investigate the understudied role of P. micra in polymicrobial infections and tumorigenesis. IMPORTANCE Parvimonas micra is among the most highly enriched species at numerous sites of mucosal dysbiotic disease and is closely associated with numerous cancers. Despite this, little is known about P. micra pathobiology, which is directly attributable to its longstanding genetic intractability. In this study, we provide the first report of P. micra natural competence and describe the only tractable genetic system for this species. The methods presented here will allow for the detailed study of P. micra and its role in infection and tumorigenesis.
Collapse
|
4
|
Regueira-Iglesias A, Vázquez-González L, Balsa-Castro C, Blanco-Pintos T, Martín-Biedma B, Arce VM, Carreira MJ, Tomás I. In-Silico Detection of Oral Prokaryotic Species With Highly Similar 16S rRNA Sequence Segments Using Different Primer Pairs. Front Cell Infect Microbiol 2022; 11:770668. [PMID: 35223533 PMCID: PMC8863748 DOI: 10.3389/fcimb.2021.770668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/31/2021] [Indexed: 11/13/2022] Open
Abstract
Although clustering by operational taxonomic units (OTUs) is widely used in the oral microbial literature, no research has specifically evaluated the extent of the limitations of this sequence clustering-based method in the oral microbiome. Consequently, our objectives were to: 1) evaluate in-silico the coverage of a set of previously selected primer pairs to detect oral species having 16S rRNA sequence segments with ≥97% similarity; 2) describe oral species with highly similar sequence segments and determine whether they belong to distinct genera or other higher taxonomic ranks. Thirty-nine primer pairs were employed to obtain the in-silico amplicons from the complete genomes of 186 bacterial and 135 archaeal species. Each fasta file for the same primer pair was inserted as subject and query in BLASTN for obtaining the similarity percentage between amplicons belonging to different oral species. Amplicons with 100% alignment coverage of the query sequences and with an amplicon similarity value ≥97% (ASI97) were selected. For each primer, the species coverage with no ASI97 (SC-NASI97) was calculated. Based on the SC-NASI97 parameter, the best primer pairs were OP_F053-KP_R020 for bacteria (region V1-V3; primer pair position for Escherichia coli J01859.1: 9-356); KP_F018-KP_R002 for archaea (V4; undefined-532); and OP_F114-KP_R031 for both (V3-V5; 340-801). Around 80% of the oral-bacteria and oral-archaea species analyzed had an ASI97 with at least one other species. These very similar species play different roles in the oral microbiota and belong to bacterial genera such as Campylobacter, Rothia, Streptococcus and Tannerella, and archaeal genera such as Halovivax, Methanosarcina and Methanosalsum. Moreover, ~20% and ~30% of these two-by-two similarity relationships were established between species from different bacterial and archaeal genera, respectively. Even taxa from distinct families, orders, and classes could be grouped in the same possible OTU. Consequently, regardless of the primer pair used, sequence clustering with a 97% similarity provides an inaccurate description of oral-bacterial and oral-archaeal species, which can greatly affect microbial diversity parameters. As a result, OTU clustering conditions the credibility of associations between some oral species and certain health and disease conditions. This significantly limits the comparability of the microbial diversity findings reported in oral microbiome literature.
Collapse
Affiliation(s)
- Alba Regueira-Iglesias
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Lara Vázquez-González
- Centro Singular de Investigación en Tecnoloxías Intelixentes and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Triana Blanco-Pintos
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Benjamín Martín-Biedma
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Víctor M. Arce
- Department of Physiology and Center for Disease in Molecular Medicine and Chronic Diseases, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J. Carreira
- Centro Singular de Investigación en Tecnoloxías Intelixentes and Departamento de Electrónica e Computación, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical-Surgical Specialties, School of Medicine and Dentistry, Universidade de Santiago de Compostela, Health Research Institute Foundation of Santiago (FIDIS), Santiago de Compostela, Spain
| |
Collapse
|
5
|
Kim YT, Jeong J, Mun S, Yun K, Han K, Jeong SN. Comparison of the oral microbial composition between healthy individuals and periodontitis patients in different oral sampling sites using 16S metagenome profiling. J Periodontal Implant Sci 2022; 52:394-410. [PMID: 36302646 PMCID: PMC9614179 DOI: 10.5051/jpis.2200680034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/07/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022] Open
Abstract
Purpose The purpose of this study was to compare the microbial composition of 3 types of oral samples through 16S metagenomic sequencing to determine how to resolve some sampling issues that occur during the collection of sub-gingival plaque samples. Methods In total, 20 subjects were recruited. In both the healthy and periodontitis groups, samples of saliva and supra-gingival plaque were collected. Additionally, in the periodontitis group, sub-gingival plaque samples were collected from the deepest periodontal pocket. After DNA extraction from each sample, polymerase chain reaction amplification was performed on the V3-V4 hypervariable region on the 16S rRNA gene, followed by metagenomic sequencing and a bioinformatics analysis. Results When comparing the healthy and periodontitis groups in terms of alpha-diversity, the saliva samples demonstrated much more substantial differences in bacterial diversity than the supra-gingival plaque samples. Moreover, in a comparison between the samples in the case group, the diversity score of the saliva samples was higher than that of the supra-gingival plaque samples, and it was similar to that of the sub-gingival plaque samples. In the beta-diversity analysis, the sub-gingival plaque samples exhibited a clustering pattern similar to that of the periodontitis group. Bacterial relative abundance analysis at the species level indicated lower relative frequencies of bacteria in the healthy group than in the periodontitis group. A statistically significant difference in frequency was observed in the saliva samples for specific pathogenic species (Porphyromonas gingivalis, Treponema denticola, and Prevotella intermedia). The saliva samples exhibited a similar relative richness of bacterial communities to that of sub-gingival plaque samples. Conclusions In this 16S oral microbiome study, we confirmed that saliva samples had a microbial composition that was more similar to that of sub-gingival plaque samples than to that of supra-gingival plaque samples within the periodontitis group.
Collapse
Affiliation(s)
- Yeon-Tae Kim
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
- Daejeon Dental Care Center for Persons with Special Needs, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| | - Jinuk Jeong
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Korea
| | - Seyoung Mun
- Department of Nanobiomedical Science, Dankook University, Cheonan, Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Korea
| | | | - Kyudong Han
- Department of Bioconvergence Engineering, Dankook University, Jukjeon, Korea
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan, Korea
- Department of Microbiology, College of Science & Technology, Dankook University, Cheonan, Korea
| | - Seong-Nyum Jeong
- Department of Periodontology, Daejeon Dental Hospital, Institute of Wonkwang Dental Research, Wonkwang University College of Dentistry, Daejeon, Korea
| |
Collapse
|
6
|
Boya BR, Kumar P, Lee JH, Lee J. Diversity of the Tryptophanase Gene and Its Evolutionary Implications in Living Organisms. Microorganisms 2021; 9:microorganisms9102156. [PMID: 34683477 PMCID: PMC8537960 DOI: 10.3390/microorganisms9102156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 12/11/2022] Open
Abstract
Tryptophanase encoded by the gene tnaA is a pyridoxal phosphate-dependent enzyme that catalyses the conversion of tryptophan to indole, which is commonly used as an intra- and interspecies signalling molecule, particularly by microbes. However, the production of indole is rare in eukaryotic organisms. A nucleotide and protein database search revealed tnaA is commonly reported in various Gram-negative bacteria, but that only a few Gram-positive bacteria and archaea possess the gene. The presence of tnaA in eukaryotes, particularly protozoans and marine organisms, demonstrates the importance of this gene in the animal kingdom. Here, we document the distribution of tnaA and its acquisition and expansion among different taxonomic groups, many of which are usually categorized as non-indole producers. This study provides an opportunity to understand the intriguing role played by tnaA, and its distribution among various types of organisms.
Collapse
|
7
|
Park SN, Lim YK, Shin JH, Jo E, Chang YH, Shin Y, Paek J, Kim H, Kook JK. Paenibacillus oralis sp. nov., Isolated from Human Subgingival Dental Plaque of Gingivitis Lesion. Curr Microbiol 2019; 77:509-515. [PMID: 31832844 DOI: 10.1007/s00284-019-01843-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 12/06/2019] [Indexed: 11/29/2022]
Abstract
A Gram-stain-negative, facultative anaerobic, spore-forming, motile, and rod-shaped bacterium, strain ChDC PVNT-B20T, was isolated from the human subgingival dental plaque of a gingivitis lesion. Phylogenetic analysis based on the 16S ribosomal RNA gene (16S rDNA) showed that the strain belonged to the genus Paenibacillus. BLAST analysis of 16S rDNA sequence of the strain displayed high identity to those of Paenibacillus faecis DSM 23593T (97.7% similarity) and Paenibacillus macerans ATCC 8244T (97.6% similarity). Draft genome of strain ChDC PVNT-B20T was composed of 8,112,407 bp. The DNA G+C content of the strain was 51.3 mol%. Average nucleotide identity values between strain ChDC PVNT-B20T and P. faecis DSM 23593T or P. macerans ATCC 8244T were 75.71% and 91.5%, respectively. Genome-to-genome distance values between strain ChDC PVNT-B20T and P. faecis DSM 23593T or P. macerans ATCC 8244T were 21.6% (19.3-24.0%) and 44.9% (42.3-47.4%), respectively. Major cellular fatty acids of strain ChDC PVNT-B20T were anteiso-C15:0 (43.4%), C16:0 (16.6%), iso-C16:0 (14.4%), and anteiso-C17:0 (12.4%). The sole respiratory quinone of the strain was menaqinone-7. Major polar lipids of the strain were phosphatidylglycerol (PG), diphosphatidylglycerol (DPG), and one unidentified glycolipid (GL). Minor polar lipids were one unidentified aminolipid (AL), one unidentified phospholipid (PL), and three unidentified lipids (L1-L3). Based on these results, strain ChDC PVNT-B20T is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus oralis sp. nov. is proposed. Type strain is ChDC PVNT-B20T (= KCOM 3021T = JCM 33462 T).
Collapse
Affiliation(s)
- Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc, Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
8
|
Lim YK, Park SN, Shin JH, Ji S, Jo E, Chang YH, Shin Y, Paek J, Kim H, Kook JK. Streptococcus koreensis sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion. Curr Microbiol 2019; 76:1531-1536. [PMID: 31570960 DOI: 10.1007/s00284-019-01778-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 01/29/2023]
Abstract
A novel facultative anaerobic, Gram-stain-positive coccus, strain JS71T, was isolated from the human subgingival dental plaque of a periodontitis lesion. Phylogenetic analysis based on the 16S ribosomal RNA gene (16S rDNA) revealed that the strain belonged to the genus Streptococcus. The 16S rDNA sequence had high similarity with Streptococcus rubneri DSM 26920T (98.6%), Streptococcus parasanguinis ATCC 15912T (98.5%), and Streptococcus australis CCUG 45919T (98.3%). The genome of strain JS71T was 2,009,592 bp in length. The DNA G+C content of the strain was 42.1 mol%. Average nucleotide identity values between strain JS71T and S. rubneri DSM 26920T, S. parasanguinis ATCC 15912T, and S. australis CCUG 45919T were 88.9%, 80.8%, and 92.4%, respectively. Genome-to-genome distance values between strain JS71TS. rubneri DSM 26920T, S. parasanguinis ATCC 15912T, and S. australis CCUG 45919T were 36.5% (34-39%), 26.3% (23.9-28.7%), and 48.0% (45.4-50.6%), respectively. The major fatty acids of the strain were C16:0 (39.7%), C18:1 ω6c/C18:1 ω7c (15.5%), and C18:0 (10.4%). Based on these results, strain JS71T (= KCOM 2890T = JCM 33454T) should be a novel species of the genus Streptococcus, for which the name Streptococcus koreensis sp. nov. is proposed.
Collapse
Affiliation(s)
- Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Suk Ji
- Department of Periodontics, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
9
|
Lim YK, Park SN, Lee WP, Shin JH, Jo E, Shin Y, Paek J, Chang YH, Kim H, Kook JK. Lautropia dentalis sp. nov., Isolated from Human Dental Plaque of a Gingivitis Lesion. Curr Microbiol 2019; 76:1369-1373. [PMID: 31446477 DOI: 10.1007/s00284-019-01761-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/13/2019] [Accepted: 08/16/2019] [Indexed: 12/01/2022]
Abstract
A novel Gram-stain-negative, motile, and facultative anaerobic coccus, strain ChDC F240T was isolated from human subgingival dental plaque of a gingivitis lesion. The phylogenetic analysis based on the 16S ribosomal RNA gene (16S rDNA) sequence showed that the strain belonged to the genus Lautropia. 16S rDNA of strain ChDC F240T had the highest similarity to that of Lautropia mirabilis ATCC 51599T (98.8%). Major cellular fatty acids of strain ChDC F240T were C16:0 (43.9%) and C16:1ω6C/C16:1ω7C (38.1%). Draft genome of the strain was 3,834,139 bp in length and the G+C content was 65.0 mol%. Average nucleotide identity and genome-to-genome distance values between strain ChDC F240T and L. mirabilis ATCC 51599 T were 81.99% and 28.50% (26.1-30.9%), respectively. These results reveal that strain ChDC F240T is a novel species within the genus Lautropia, for which the name Lautropia dentalis sp. nov. is proposed; type strain is ChDC F240T (= KCOM 2505T = JCM 33297T).
Collapse
Affiliation(s)
- Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Won-Pyo Lee
- Korean Collection for Oral Microbiology and Department of Periodontology, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
10
|
Lim YK, Park SN, Jo E, Shin JH, Chang YH, Shin Y, Paek J, Kim H, Kook JK. Lachnoanaerobaculum gingivalis sp. nov., Isolated from Human Subgingival Dental Plaque of a Gingivitis Lesion. Curr Microbiol 2019; 76:1147-1151. [PMID: 31350572 DOI: 10.1007/s00284-019-01747-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/19/2019] [Indexed: 11/30/2022]
Abstract
A novel Gram-stain-positive, obligately anaerobic, spore-forming rod, designated strain ChDC B114T, was isolated from a human dental plaque of a gingivitis lesion. The strain was characterized by polyphasic taxonomic analysis to identify it at the species level. The 16S ribosomal RNA gene (16S rDNA) sequence analysis revealed that the strain belongs to the genus Lachnoanaerobaculum. The percent similarity of the 16S rDNA of the strain was closest to the homologous gene sequence of Lachnoanaerobaculum orale N1T (98.5%) and Lachnoanaerobaculum saburreum CCUG 28089T (97.6%). The major fatty acids of strain ChDC B114T were C16:0 (30.7%), C14:0 (17.7%), iso-C19:0 (14.9%), and C17:0 2OH (12.0%). The draft genome of strain ChDC B114T was 3,097,953 bp in length. The G+C content of the strain was 35.9 mol %. Average nucleotide identity values between strain ChDC B114T and L. orale N1T and L. saburreum CCUG 28089T were 83.2% and 82.0%, respectively. Genome-to-genome distance values between strain ChDC B114T and L. orale N1T and L. saburreum CCUG 28089T were 26.8% (24.5-29.3%) and 26.30% (24.0-28.8%), respectively. Based on these results, strain ChDC B114T (= KCOM 2030T = JCM 33452T) should be classified as a novel species of genus Lachnoanaerobaculum, for which the name Lachnoanaerobaculum gingivalis sp. nov. is proposed.
Collapse
Affiliation(s)
- Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc, Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
11
|
Streptococcus chosunense sp. nov., Isolated from Human Postoperative Maxillary Cyst. Curr Microbiol 2019; 76:1193-1198. [PMID: 31332483 DOI: 10.1007/s00284-019-01746-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 10/26/2022]
Abstract
A novel facultative anaerobic, non-spore forming, non-motile, and Gram-stain-positive coccus, designated strain ChDC B353T, was isolated from human postoperative maxillary cyst. The 16S ribosomal RNA gene (16S rDNA) sequence of the strain was most closely related to those of Streptococcus pseudopneumoniae ATCC BAA-960T (99.4%), Streptococcus mitis NCTC 12261T (99.3%), and Streptococcus pneumoniae NCTC 7465T (99.2%). The major fatty acids of the strain were C16:0 (43.2%) and C18:1 ω6c/C18:1 ω7c (20.2%). The genome of strain ChDC B353T was composed of 1,902,053 bps. The DNA G+C content of the strain was 40.2 mol%. Average nucleotide identity (ANI) values between strain ChDC B353T and S. pseudopneumoniae ATCC BAA-960T, S. mitis NCTC 12261T, and S. pneumoniae NCTC 7465T were 91.9%, 93.5%, and 91.3%, respectively. Genome-to-genome distance (GGD) values between strain ChDC B353T and S. pseudopneumoniae ATCC BAA-960T, S. mitis NCTC 12261T, or S. pneumoniae NCTC 7465T were 46.6% (44.0-49.2%), 53.2% (50.5-55.9%), and 46.0% (43.5-48.7%), respectively. The threshold values of ANI and GGD for species discrimination are 95-96% and 70%, respectively. These results reveal that strain ChDC B353T (= KCOM 1699T = JCM 33453T) is a novel species belonging to genus Streptococcus, for which a name of Streptococcus chosunense sp. nov. is proposed.
Collapse
|
12
|
Lee SA, Liu F, Riordan SM, Lee CS, Zhang L. Global Investigations of Fusobacterium nucleatum in Human Colorectal Cancer. Front Oncol 2019; 9:566. [PMID: 31334107 PMCID: PMC6618585 DOI: 10.3389/fonc.2019.00566] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/11/2019] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer and second in terms of mortality. Emerging evidence from recent studies suggests a potential role of Fusobacterium nucleatum in the development of CRC. In this article, we review studies from different geographical regions examining the association between F. nucleatum and CRC, the detection methods and the tumorigenic mechanisms. Furthermore, we discuss the potential clinical impact of F. nucleatum in CRC and suggest future study directions.
Collapse
Affiliation(s)
- Seul A Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, NSW, Australia
| | - Cheok S Lee
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW, Australia.,Faculty of Medicine and Health, Central Clinical School, University of Sydney, Sydney, NSW, Australia.,Faculty of Medicine, South Western Sydney Clinical School, University of New South Wales, Sydney, NSW, Australia.,Department of Anatomical Pathology, Liverpool Hospital, Sydney, NSW, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Prevotella koreensis sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion. Curr Microbiol 2019; 76:1055-1060. [PMID: 31214821 DOI: 10.1007/s00284-019-01720-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
Abstract
A novel Gram-negative, obligately anaerobic, non-motile, non-spore forming, and rod-shaped bacterium, designated strain JS262T, was isolated from human subgingival plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. Comparison of 16S ribosomal RNA gene (16S rDNA) sequence revealed that the strain belonged to the genus Prevotella. The percent similarity of 16S rDNA of strain JS262T was closest to those of Prevotella buccae ATCC 33574T (89.1%) and Prevotella shahii JCM 12083T (88.9%). The major fatty acids of strain JS262T were C16:0 (29.2%), iso-C15:0 (19.2%), and anteiso-C15:0 (16.9%). Complete genome of strain JS262T was 2,691,540 bp in length and the G+C content was 43.9 mol%. Average nucleotide identity and genome-to-genome distance values between strain JS262T and P. buccae ATCC 33574T or P. loescheii DSM 19665T were > 70.4% and > 30.1%, respectively. On the basis of these data, a novel Prevotella species is proposed: Prevotella koreensis sp. nov. The type strain of P. koreensis is JS262T (= KCOM 3155T = JCM 33298T).
Collapse
|
14
|
Lim YK, Park SN, Shin JH, Chang YH, Shin Y, Paek J, Kim H, Kook JK. Streptococcus periodonticum sp. nov., Isolated from Human Subgingival Dental Plaque of Periodontitis Lesion. Curr Microbiol 2019; 76:835-841. [PMID: 31053905 DOI: 10.1007/s00284-019-01695-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 04/24/2019] [Indexed: 11/29/2022]
Abstract
A novel facultative anaerobic and Gram-stain-positive coccus, designated strain ChDC F135T, was isolated from human subgingival dental plaque of periodontitis lesion and was characterized by polyphasic taxonomic analysis. The 16S rRNA gene (16S rDNA) sequence of strain ChDC F135T was closest to that of Streptococcus sinensis HKU4T (98.2%), followed by Streptococcus intermedia SK54T (97.0%), Streptococcus constellatus NCTC11325T (96.0%), and Streptococcus anginosus NCTC 10713T (95.7%). In contrast, phylogenetic analysis based on the superoxide dismutase gene (sodA) and the RNA polymerase beta-subunit gene (rpoB) showed that the nucleotide sequence similarities of strain ChDC F135T were highly similar to the corresponding genes of S. anginosus NCTC 10713T (99.2% and 97.6%, respectively), S. constellatus NCTC11325T (87.8% and 91.4%, respectively), and S. intermedia SK54T (85.8% and 91.2%, respectively) rather than those of S. sinensis HKU4T (80.5% and 82.6%). The complete genome of strain ChDC F135T consisted of 1,901,251 bp and the G+C content was 38.9 mol %. Average nucleotide identity value between strain ChDC F135T and S. sinensis HKU4T or S. anginosus NCTC 10713T were 75.7% and 95.6%, respectively. The C14:0 composition of the cellular fatty acids of strain ChDC F135T (32.8%) was different from that of S. intermedia (6-8%), S. constellatus (6-13%), and S. anginosus (13-20%). Based on the results of phylogenetic and phenotypic analysis, strain ChDC F135T (= KCOM 2412T = JCM 33300T) was classified as a type strain of a novel species of the genus Streptococcus, for which we proposed the name Streptococcus periodonticum sp. nov.
Collapse
Affiliation(s)
- Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc, Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
15
|
Streptococcus gwangjuense sp. nov., Isolated from Human Pericoronitis. Curr Microbiol 2019; 76:799-803. [PMID: 31028412 DOI: 10.1007/s00284-019-01687-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 04/09/2019] [Indexed: 10/26/2022]
Abstract
A novel facultative anaerobic, Gram-stain-negative coccus, designated strain ChDC B345T, was isolated from human pericoronitis lesion and was characterized by polyphasic taxonomic analysis. The 16S ribosomal RNA gene (16S rDNA) sequence revealed that the strain belonged to the genus Streptococcus. The 16S rDNA sequence of strain ChDC B345T was most closely related to those of Streptococcus mitis NCTC 12261T (99.5%) and Streptococcus pseudopneumoniae ATCC BAA-960T (99.5%). Complete genome of strain ChDC B345T was 1,972,471 bp in length and the G + C content was 40.2 mol%. Average nucleotide identity values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 92.17% and 93.63%, respectively. Genome-to-genome distance values between strain ChDC B345T and S. pseudopneumoniae ATCC BAA-960T or S. mitis NCTC 12261T were 47.8% (45.2-50.4%) and 53.0% (51.0-56.4%), respectively. Based on these results, strain ChDC B345T (= KCOM 1679T = JCM 33299T) should be classified as a novel species of genus Streptococcus, for which we propose the name Streptococcus gwangjuense sp. nov.
Collapse
|
16
|
Park SN, Lim YK, Shin JH, Kim HS, Jo E, Lee WP, Shin Y, Paek J, Chang YH, Kim H, Kook JK. Fusobacterium pseudoperiodonticum sp. nov., Isolated from the Human Oral Cavity. Curr Microbiol 2019; 76:659-665. [PMID: 30937514 DOI: 10.1007/s00284-019-01675-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 03/20/2019] [Indexed: 11/25/2022]
Abstract
In the present study, three strains (ChDC F213T, ChDC F251, and ChDC F267) were classified as novel species of genus Fusobacterium based on average nucleotide identity (ANI) and genome-to-genome distance (GGD) analysis and chemotaxonomic characterization. 16S rDNA sequences of strains ChDC F213T, ChDC F251, and ChDC F267 were highly similar to that of F. periodonticum ATCC 33693T (99.6, 99.4, and 99.4%, respectively). ANI and GGD values of the three isolates with F. periodonticum ATCC 33693T ranged from 92.5 to 92.6% and 47.7 to 48.2%, respectively. Considering that threshold of ANI and GGD values for bacterial species discrimination are 95-96% and 70%, respectively, these results indicate that the three isolates represent a novel Fusobacterium species. DNA G + C contents of the three isolates were 28.0 mol% each. Cellular fatty acid analysis of these strains revealed that C14:0, C16:0, and C16:1 ω6c/C16:1 ω7c were major fatty acids. Therefore, these three strains are novel species belonging to genus Fusobacterium. Strain ChDC F213T (= KCOM 1259T = KCTC 5677T = JCM 33009T) is the type strain of a novel species of genus Fusobacterium, for which a name of Fusobacterium pseudoperiodonticum sp. nov. is proposed.
Collapse
Affiliation(s)
- Soon-Nang Park
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Hwa-Sook Kim
- Department of Dental Hygiene, Chunnam Techno University, Chunnam, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Won-Pyo Lee
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Joong-Ki Kook
- Korean Collection for Oral Microbiology and Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Wang G, Yu Y, Wang YZ, Wang JJ, Guan R, Sun Y, Shi F, Gao J, Fu XL. Role of SCFAs in gut microbiome and glycolysis for colorectal cancer therapy. J Cell Physiol 2019; 234:17023-17049. [PMID: 30888065 DOI: 10.1002/jcp.28436] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/02/2019] [Accepted: 02/14/2019] [Indexed: 12/19/2022]
Abstract
Increased risk of colorectal cancer (CRC) is associated with altered intestinal microbiota as well as short-chain fatty acids (SCFAs) reduction of output The energy source of colon cells relies mainly on three SCFAs, namely butyrate (BT), propionate, and acetate, while CRC transformed cells rely mainly on aerobic glycolysis to provide energy. This review summarizes recent research results for dysregulated glucose metabolism of SCFAs, which could be initiated by gut microbiome of CRC. Moreover, the relationship between SCFA transporters and glycolysis, which may correlate with the initiation and progression of CRC, are also discussed. Additionally, this review explores the linkage of BT to transport of SCFAs expressions between normal and cancerous colonocyte cell growth for tumorigenesis inhibition in CRC. Furthermore, the link between gut microbiota and SCFAs in the metabolism of CRC, in addition, the proteins and genes related to SCFAs-mediated signaling pathways, coupled with their correlation with the initiation and progression of CRC are also discussed. Therefore, targeting the SCFA transporters to regulate lactate generation and export of BT, as well as applying SCFAs or gut microbiota and natural compounds for chemoprevention may be clinically useful for CRCs treatment. Future research should focus on the combination these therapeutic agents with metabolic inhibitors to effectively target the tumor SCFAs and regulate the bacterial ecology for activation of potent anticancer effect, which may provide more effective application prospect for CRC therapy.
Collapse
Affiliation(s)
- Gang Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Yang Yu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yu-Zhu Wang
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jun-Jie Wang
- Department of Pharmaceutics, Shanghai Eighth People's Hospital, Jiangsu University, Shanghai, China
| | - Rui Guan
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Yan Sun
- Information Resources Department, Hubei University of Medicine, Shiyan, Hubei, China
| | - Feng Shi
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jing Gao
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xing-Li Fu
- Department of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
18
|
Purcell RV, Visnovska M, Biggs PJ, Schmeier S, Frizelle FA. Distinct gut microbiome patterns associate with consensus molecular subtypes of colorectal cancer. Sci Rep 2017; 7:11590. [PMID: 28912574 PMCID: PMC5599497 DOI: 10.1038/s41598-017-11237-6] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/21/2017] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and recent advances in subtype classification have successfully stratified the disease using molecular profiling. The contribution of bacterial species to CRC development is increasingly acknowledged, and here, we sought to analyse CRC microbiomes and relate them to tumour consensus molecular subtypes (CMS), in order to better understand the relationship between bacterial species and the molecular mechanisms associated with CRC subtypes. We classified 34 tumours into CRC subtypes using RNA-sequencing derived gene expression and determined relative abundances of bacterial taxonomic groups using 16S rRNA amplicon metabarcoding. 16S rRNA analysis showed enrichment of Fusobacteria and Bacteroidetes, and decreased levels of Firmicutes and Proteobacteria in CMS1. A more detailed analysis of bacterial taxa using non-human RNA-sequencing reads uncovered distinct bacterial communities associated with each molecular subtype. The most highly enriched species associated with CMS1 included Fusobacterium hwasookii and Porphyromonas gingivalis. CMS2 was enriched for Selenomas and Prevotella species, while CMS3 had few significant associations. Targeted quantitative PCR validated these findings and also showed an enrichment of Fusobacterium nucleatum, Parvimonas micra and Peptostreptococcus stomatis in CMS1. In this study, we have successfully associated individual bacterial species to CRC subtypes for the first time.
Collapse
Affiliation(s)
- Rachel V Purcell
- Department of Surgery, University of Otago, Christchurch, New Zealand.
| | - Martina Visnovska
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Patrick J Biggs
- Hopkirk Institute, Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - Sebastian Schmeier
- Institute of Natural and Mathematical Sciences, Massey University, Auckland, New Zealand
| | - Frank A Frizelle
- Department of Surgery, University of Otago, Christchurch, New Zealand
| |
Collapse
|
19
|
Kook JK, Park SN, Lim YK, Cho E, Jo E, Roh H, Shin Y, Paek J, Kim HS, Kim H, Shin JH, Chang YH. Genome-Based Reclassification of Fusobacterium nucleatum Subspecies at the Species Level. Curr Microbiol 2017; 74:1137-1147. [PMID: 28687946 DOI: 10.1007/s00284-017-1296-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/29/2017] [Indexed: 10/19/2022]
Abstract
Fusobacterium nucleatum is classified as four subspecies, subsp. nucleatum, polymorphum, vincentii, and animalis, based on DNA-DNA hybridization (DDH) patterns, phenotypic characteristics, and/or multilocus sequence analysis (MLSA). The gold standards for classification of bacterial species are DDH and 16S ribosomal RNA gene (16S rDNA) sequence homology. The thresholds of DDH and 16S rDNA similarity for delineation of bacterial species have been suggested to be >70 and 98.65%, respectively. Average nucleotide identity (ANI) and genome-to-genome distance (GGD) analysis based on genome sequences were recently introduced as a replacement for DDH to delineate bacterial species with ANI (95-96%) and GGD (70%) threshold values. In a previous study, F. hwasookii was classified as a new species based on MLSA and DDH results. 16S rDNA similarity between F. hwasookii type strain and F. nucleatum subspecies type strains was higher than that between F. nucleatum subspecies type strains. Therefore, it is possible that the four F. nucleatum subspecies can be classified as Fusobacterium species. In this study, we performed ANI and GGD analyses using the genome sequences of 36 F. nucleatum, five F. hwasookii, and one Fusobacterium periodonticum strain to determine whether the four F. nucleatum subspecies could be classified as species using OrthoANI and ANI web-based softwares provided by ChunLab and Kostas lab, respectively, and GGD calculator offered by German Collection of Microorganisms and Cell Cultures. ANI values calculated from OrthoANI and ANI calculators between the type strains of F. nucleatum subspecies ranged from 89.80 to 92.97 and from 90.40 to 91.90%, respectively. GGD values between the type strains of F. nucleatum subspecies ranged from 42.3 to 46.0%. ANI and GGD values among strains belonging to the same F. nucleatum subspecies, subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis were >96 and >68.2%, respectively. These results strongly suggest that F. nucleatum subsp. nucleatum, subsp. polymorphum, subsp. vincentii, and subsp. animalis should be classified as F. nucleatum, F. polymorphum, F. vincentii, and F. animalis, respectively.
Collapse
Affiliation(s)
- Joong-Ki Kook
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea. .,Oral Biology Research Institute, Chosun University, Gwangju, Republic of Korea.
| | - Soon-Nang Park
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Yun Kyong Lim
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eugene Cho
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | - Eojin Jo
- Korean Collection for Oral Microbiology, Department of Oral Biochemistry, School of Dentistry, Chosun University, Gwangju, Republic of Korea
| | | | - Yeseul Shin
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Jayoung Paek
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea
| | - Hwa-Sook Kim
- Department of Dental Hygiene, Chunnam Techno University, Gokseong-gun, Chunnam, Republic of Korea
| | - Hongik Kim
- Vitabio, Inc., Daejeon, Republic of Korea
| | - Jeong Hwan Shin
- Department of Laboratory Medicine, Inje University College of Medicine, Busan, Republic of Korea
| | - Young-Hyo Chang
- ABS Research Support Center, KRIBB, Daejeon, Republic of Korea.
| |
Collapse
|