1
|
Ugwuoji ET, Eze IS, Nwagu TNT, Ezeogu LI. Enhancement of stability and activity of RSD amylase from Paenibacillus lactis OPSA3 for biotechnological applications by covalent immobilization on green silver nanoparticles. Int J Biol Macromol 2024; 279:135132. [PMID: 39208879 DOI: 10.1016/j.ijbiomac.2024.135132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/10/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The key challenge to the biotechnological applications of amylases is achieving high activity and stability under extreme pH, temperature and often high levels of enzyme denaturants. This study immobilized a novel raw starch-digesting (RSD) amylase from Paenibacillus lactis OPSA3 on glutaraldehyde-activated silver nanoparticles. Effects of time, glutaraldehyde concentration, pH, temperature, and enzyme concentration on immobilization were studied, and the immobilized enzymes were characterized. pH 9.0 was optimum for the enzyme immobilization. The maximum immobilization efficiency of 82.23 ± 7.99 % was achieved at 25 °C for 120 min. After immobilization, the optimum pH and temperature changed from 9.0 to 11.0 and 60 to 70, respectively. Immobilization reduced the amylase's activation energy (KJ/mol) from the initial 58.862 to 45.449 following immobilization. The Km of the amylase decreased after immobilization, while the Vmax increased. The immobilized amylase showed significantly greater storage and thermal stability than the free amylase. At 80, enzyme half-life (min) and D value (min) increased from 12.33 to 179.11 and 40.94 to 594.98, respectively. The immobilized amylase (80-88 %) had more stability to the effects of the studied surfactants than the free enzyme. It also showed improved stability in the presence of commercial detergents compared to the free enzyme. The amylase's enhanced kinetic parameters and stability following successful immobilization on silver nanoparticles indicate its potential for application in the range of biotechnological processes where alkaline- and temperature-stable amylases are employed.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria; Department of Biology, Baylor University, Waco, TX, USA; Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Ifeanyi S Eze
- Department of Industrial Chemistry, Faculty of Physical Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria.
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria; UNESCO International Centre for Biotechnology, Nsukka, Nigeria.
| |
Collapse
|
2
|
Ugwuoji ET, Nwagu TNT, Ezeogu LI. Detergent-stable amylase production by Paenibacillus lactis strain OPSA3 isolated from soil; optimization by response surface methodology. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 39:e00808. [PMID: 37528864 PMCID: PMC10388169 DOI: 10.1016/j.btre.2023.e00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 08/03/2023]
Abstract
This study aimed to isolate thermostable, alkaliphilic, and detergent-tolerant amylase-producing bacteria. Pure isolates from environmental samples were screened on a starch-based medium (pH 11), and selected isolates were identified using cultural and molecular techniques. Product optimization studies were conducted, and secreted amylase was partially purified using 40% (w/v) saturation ammonium sulfate at 4 °C. The wash performance of concentrated amylase was analyzed. A novel isolate, Paenibacillus lactis OPSA3, was selected for further studies. The isolate produced amylase optimally when grown on banana peels and soybean extracts, which are agro-wastes. Optimization by Response surface Methodology resulted in a 2.1-fold increase in alkaliphilic amylase production. A 2.46-fold purification was achieved, with an enzyme activity yield of 79.53% and specific activity of 26.19 Umg-1. Wash performance analysis using the amylase supplemented with boiled commercial detergent (kiln®) showed good cleaning efficiency. The amylase has the potential for application as a component of green detergent.
Collapse
Affiliation(s)
- Emmanuel Tobechukwu Ugwuoji
- Department of Applied Microbiology and Brewing, Faculty of Biosciences, Nnamdi Azikiwe University, Awka, Anambra State, Nigeria
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Tochukwu Nwamaka T. Nwagu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
| | - Lewis Iheanacho Ezeogu
- Department of Microbiology, Faculty of Biological Sciences, University of Nigeria, Nsukka, Enugu State, Nigeria
- UNESCO International Centre for Biotechnology, Nsukka, Nigeria
| |
Collapse
|
3
|
Qi SS, Cnockaert M, Carlier A, Vandamme PA. Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp. nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., isolated from the Arabidopsis thaliana phyllosphere. Int J Syst Evol Microbiol 2021; 71. [PMID: 33886446 DOI: 10.1099/ijsem.0.004781] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Six endospore-forming, Gram-stain-positive or variable, motile, rod-shaped, aerobic or facultatively anaerobic bacteria with different MALDI-TOF mass spectra (MS) were isolated from the phyllosphere of Arabidopsis thaliana plants grown in plant chambers after inoculation of surface sterilized seeds with a top soil microbial cell suspension. They were identified as members of the genus Paenibacillus through comparison with a commercial MALDI-TOF MS database and comparative 16S rRNA gene sequencing. Their genome sequences comprised multiple biosynthetic gene clusters and suggested they have unexplored biotechnological potential. Analyses of average nucleotide identity values between these strains and the type strains of their nearest neighbour species demonstrated that they represented a novel Paenibacillus species each. A detailed phenotypic comparison yielded distinctive biochemical characteristics for each of these novel species. We therefore propose to classify that these isolates into six novel species within genus Paenibacillus, for which we propose the names Paenibacillus foliorum sp. nov., Paenibacillus phytohabitans sp. nov., Paenibacillus plantarum sp. nov., Paenibacillus planticolens sp. nov., Paenibacillus phytorum sp. nov. and Paenibacillus germinis sp. nov., with strains LMG 31456T (=R-74617T=CECT 30138T), LMG 31459T (=R-74621T=CECT 30135T), LMG 31461T (=R-74618T=CECT 30133T), LMG 31457T (=R-74619T=CECT 30137T), LMG 31458T (=R-74620T=CECT 30136T) and LMG 31460T (=R-74622T=CECT 30134T) as the type strains, respectively.
Collapse
Affiliation(s)
- Shan Shan Qi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Margo Cnockaert
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Aurélien Carlier
- LIPM, Université de Toulouse, INRAE, CNRS, Castanet-Tolosan, France.,Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Peter A Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
4
|
Kim HS, Bang JJ, Lee SS. Gelidibacter flavus sp. nov., Isolated from Activated Sludge of Seawater Treatment System. Curr Microbiol 2017; 74:1247-1252. [PMID: 28913636 DOI: 10.1007/s00284-017-1280-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 06/06/2017] [Indexed: 10/18/2022]
Abstract
A Gram-stain-negative bacterial strain designated Con4T was isolated from activated sludge in a seawater treatment system. The strain was rod-shaped, motile, aerobic, and formed yellow-colored colonies on agar medium. Cells contained carotenoid pigments, but flexirubin-type pigments were absent. Based on 16S rRNA gene sequence analysis, the strain was assigned to the genus Gelidibacter. Optimum growth occurred at 20 °C, pH 7.0, and 1-2% (w/v) NaCl. Prominent fatty acid types were iso-C15:0, anteiso-C15:0, and iso-C16:0 3OH. Diphosphatidylglycerol and phosphatidylethanolamine were present as the major polar lipids. MK-6 was present as major menaquinone. Strain Con4T showed the highest sequence similarity with Gelidibacter mesophilus KCTC 12106T (96.5%), Gelidibacter gilvus IC158T (96.4%), and Gelidibacter algens ACAM 536T (95.8%). The G+C mol% contents of the strain Con4T were 37.7%. Distinct morphological, physiological, and genotypic differences from the previously described taxa support the classification of strain Con4T as a representative of a novel species in the genus Gelidibacter, for which the name Gelidibacter flavus sp. nov. is proposed. The type strain is Con4T (=KEMB 41-198T = JCM 31135T).
Collapse
Affiliation(s)
- Hyun-Sook Kim
- Department of Bioengineering, Kyonggi University, 94-6 Iui-dong Yeongtong-gu, Suwon, 443-760, Republic of Korea
| | - John J Bang
- Department of Environmental, Earth and Geospatial Science, North Carolina Central University, Fayettevile St., Durham, NC, 27707, USA
| | - Sang-Seob Lee
- Department of Bioengineering, Kyonggi University, 94-6 Iui-dong Yeongtong-gu, Suwon, 443-760, Republic of Korea.
| |
Collapse
|
5
|
Zhang J, Ma XT, Gao JS, Zhao JJ, Yin HQ, Zhang CW, Zhang RJ, Zhang XX. Paenibacillus
oryzae sp. nov., isolated from rice roots. Int J Syst Evol Microbiol 2016; 66:5000-5004. [DOI: 10.1099/ijsem.0.001459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Jun Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- College of Life Science, The Yangtze University, Jingzhou 434025, PR China
| | - Xiao-Tong Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jun-Sheng Gao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
- Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang 426182, PR China
| | - Juan-Juan Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Hua-Qun Yin
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, PR China
| | - Cai-Wen Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Rui-Jie Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Xiao-Xia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
6
|
Zhang J, Ma XT, Gao JS, Zhang CW, Zhao JJ, Zhang RJ, Ma LA, Zhang XX. Paenibacillus oryzisoli sp. nov., isolated from the rhizosphere of rice. Antonie van Leeuwenhoek 2016; 110:69-75. [PMID: 27734255 DOI: 10.1007/s10482-016-0777-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 11/30/2022]
Abstract
A novel bacterium, strain 1ZS3-15T, was isolated from rhizosphere of rice. Its taxonomic position was investigated using a polyphasic approach. The novel strain was observed to be Gram-stain positive, spore-forming, aerobic, motile and rod-shaped. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain 1ZS3-15T was recovered within the genus Paenibacillus. It is closely related to Paenibacillus pectinilyticus KCTC 13222T (97.9 % similarity), Paenibacillus frigoriresistens CCTCC AB 2011150T (96.8 %), Paenibacillus alginolyticus JCM 9068T (96.4 %) and Paenibacillus chondroitinus DSM 5051T (95.5 %). The fatty acid profile of strain 1ZS3-15T, which showed a predominance of anteiso-C15:0 and iso-C16:0, supported the allocation of the strain into the genus Paenibacillus. The predominant menaquinone was found to be MK-7. The polar lipids profile of strain 1ZS3-15T was found to consist of diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, one unidentified lipid and two unidentified aminophospholipids. The cell wall peptidoglycan contains meso-diaminopimelic acid. Based on draft genome sequences, the DNA-DNA relatedness between strain 1ZS3-15T and the closely related species P. pectinilyticus KCTC 13222T are 24.2 ± 1.0 %, and the Average Nucleotide Identity values between the strains are 78.9 ± 0.1 %, which demonstrated that this isolate represents a new species in the genus Paenibacillus. The DNA G+C content was determined to be 45.3 mol%, which is within the range reported for Paenibacillus species. Characterisation by genotypic, chemotaxonomic and phenotypic analysis indicated that strain 1ZS3-15T represents a novel species of the genus Paenibacillus, for which the name Paenibacillus oryzisoli sp. nov. is proposed. The type strain is 1ZS3-15T (= ACCC 19783T = JCM 30487T).
Collapse
Affiliation(s)
- Jun Zhang
- College of Life Science, The Yangtze University, Jingzhou, 434025, People's Republic of China.,Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xiao-Tong Ma
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Jun-Sheng Gao
- Qiyang Agro-ecosystem of National Field Experimental Station, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Qiyang, 426182, People's Republic of China
| | - Cai-Wen Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Juan-Juan Zhao
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Rui-Jie Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Li-An Ma
- College of Life Science, The Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Xiao-Xia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|