1
|
Zhang X, Zhang F, Mi Y, Liu Y, Zheng K, Zhou Y, Jiang T, Wang M, Jiang Y, Guo C, Shao H, He H, He J, Liang Y, Wang M, McMinn A. Characterization and genome analysis of phage AL infecting Pseudoalteromonas marina. Virus Res 2021; 295:198265. [PMID: 33550041 DOI: 10.1016/j.virusres.2020.198265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 11/29/2022]
Abstract
Although Pseudoalteromonas is an abundant, ubiquitous, marine algae-associated bacterial genus, there is still little information on their phages. In the present study, a marine phage AL, infecting Pseudoalteromonas marina, was isolated from the coastal waters off Qingdao. The AL phage is a siphovirus with an icosahedral head of 53 ± 1 nm and a non-contractile tail, length of 99 ± 1 nm. A one-step growth curve showed that the latent period was approximately 70 min, the rise period was 50 min, and the burst size was 227 pfu/cell. The genome sequence of this phage is a 33,582 bp double-stranded DNA molecule with a GC content of 40.1 %, encoding 52 open reading frames (ORFs). The order of the functional genes, especially those related to the structure module, is highly conserved and basically follows the common pattern used by siphovirus. The stable order has been formed during the long-term evolution of phages in the siphovirus group, which has helped the phages to maintain their normal morphology and function. Phylogenetic trees based on the major capsid protein (mcp) and genome-wide sequence have shown that the AL phage is closely related to four Pseudoalteromonas phages, including PHS21, PHS3, SL25 and Pq0. Further analysis using all-to-all BLASTP also confirmed that this phage shared high sequence homology with the same four Pseudoalteromonas phages, with amino acid sequence identities ranging from 44 % to 71 %. In particular, their similarity in virion structure module may imply that these phages share common assembly mechanism characteristics and infection pathways. Pseudoalteromonas phage AL not only provides basic information for the further study of the evolution of Pseudoalteromonas phages and interactions between marine phage and host but also helps to explain the unknown viral sequences in the metagenomic databases.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Fang Zhang
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Ye Mi
- Qingdao City Center for Disease Control and Prevention, Qingdao Institute of Prevention Medicine, Qingdao, Shandong, 266033, China
| | - Yundan Liu
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yao Zhou
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Tong Jiang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Meiwen Wang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hui He
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jianfeng He
- The Key Laboratory for Polar Science MNR, Polar Research Institute of China, Shanghai, 200136, China
| | - Yantao Liang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Min Wang
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.
| | - Andrew McMinn
- College of Marine Life Sciences and Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
2
|
Wang Q, Liu Y, Liu Q, Liu X, Yang F, Wang M, Shao H, Jiang Y. Isolation and Complete Genome of the Marine Pseudoalteromonas Phage C7 from Coastal Seawater of Yellow Sea, China. Curr Microbiol 2019; 77:279-285. [DOI: 10.1007/s00284-019-01815-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
|
3
|
Ye M, Sun M, Huang D, Zhang Z, Zhang H, Zhang S, Hu F, Jiang X, Jiao W. A review of bacteriophage therapy for pathogenic bacteria inactivation in the soil environment. ENVIRONMENT INTERNATIONAL 2019; 129:488-496. [PMID: 31158595 DOI: 10.1016/j.envint.2019.05.062] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
The emerging contamination of pathogenic bacteria in the soil has caused a serious threat to public health and environmental security. Therefore, effective methods to inactivate pathogenic bacteria and decrease the environmental risks are urgently required. As a century-old technique, bacteriophage (phage) therapy has a high efficiency in targeting and inactivating pathogenic bacteria in different environmental systems. This review provides an update on the status of bacteriophage therapy for the inactivation of pathogenic bacteria in the soil environment. Specifically, the applications of phage therapy in soil-plant and soil-groundwater systems are summarized. In addition, the impact of phage therapy on soil functioning is described, including soil function gene transmission, soil microbial community stability, and soil nutrient cycling. Soil factors, such as soil temperature, pH, clay mineral, water content, and nutrient components, influence the survival and activity of phages in the soil. Finally, the future research prospects of phage therapy in soil environments are described.
Collapse
Affiliation(s)
- Mao Ye
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Mingming Sun
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Dan Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Zhongyun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Hui Zhang
- Jiangsu Key Laboratory of Food Quality and Safety-State Key Laboratory Cultivation Base of MOST, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shengtian Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Environmental Protection of China, Nanjing 210042, China
| | - Feng Hu
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Wentao Jiao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
4
|
Genome Analysis of Two Novel Lytic Vibrio maritimus Phages Isolated from the Coastal Surface Seawater of Qingdao, China. Curr Microbiol 2019; 76:1225-1233. [DOI: 10.1007/s00284-019-01736-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022]
|
5
|
Li H, Liu Z, Wang M, Liu X, Wang Q, Liu Q, Jiang Y, Li Z, Shao H, McMinn A. Isolation and genome sequencing of the novel marine phage PHS3 from the Yellow Sea, China. Mar Genomics 2019. [DOI: 10.1016/j.margen.2018.10.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
6
|
Characterization and complete genome of the marine Pseudoalteromonas phage PH103, isolated from the Yellow Sea, China. Mar Genomics 2018. [DOI: 10.1016/j.margen.2018.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Liu Z, Li H, Wang M, Jiang Y, Yang Q, Zhou X, Gong Z, Liu Q, Shao H. Isolation, characterization and genome sequencing of the novel phage SL25 from the Yellow Sea, China. Mar Genomics 2017; 37:31-34. [PMID: 33250123 DOI: 10.1016/j.margen.2017.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 10/18/2022]
Abstract
Outnumbering all other biological entities on earth, bacteriophages play critical roles in structuring microbial communities. However, only a small number of phages have so far been reported. In this study, a novel Pseudoalteromonas phage, SL25, was isolated from the yellow sea, China. Transmission electron microscope observations showed that phage has an icosahedral head, 100±1nm in diameter, and a tail with a length of 150±1nm, and should be grouped into the Siphoviridae family. To better understand the genetic diversity of this phage, the complete genome was characterized. It consists 29,130-bp-length double-stranded DNA with a GC content of 41.04% and is predicted to have 61 open reading frames (ORFs) with an average length of 504 nucleotides. This study adds a new Siphoviridae phage to the marine bacteriophage dataset that could potentially infect Pseudoalteromonas. It also provides useful data for further molecular research on the interaction mechanism between bacteriophages and their hosts.
Collapse
Affiliation(s)
- Zhaoyang Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Huifang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| | - Qingwei Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Xinhao Zhou
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Zheng Gong
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| |
Collapse
|
8
|
Meng X, Wang M, You S, Wang D, Li Y, Liu Z, Gao Y, Liu L, Zhang Y, Yan Z, Liu C, Jiang Y, Shao H. Characterization and Complete Genome Sequence of a Novel Siphoviridae Bacteriophage BS5. Curr Microbiol 2017; 74:815-820. [DOI: 10.1007/s00284-017-1221-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 02/17/2017] [Indexed: 10/19/2022]
|