1
|
Matuszewska M, Dabrowska A, Murray GGR, Kett SM, Vick AJA, Banister SC, Pantoja Munoz L, Cunningham P, Welch JJ, Holmes MA, Weinert LA. Absence of Staphylococcus aureus in Wild Populations of Fish Supports a Spillover Hypothesis. Microbiol Spectr 2023; 11:e0485822. [PMID: 37341608 PMCID: PMC10434045 DOI: 10.1128/spectrum.04858-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal and opportunistic pathogen that also infects other animals. In humans and livestock, where S. aureus is most studied, strains are specialized for different host species. Recent studies have also found S. aureus in diverse wild animals. However, it remains unclear whether these isolates are also specialized for their hosts or whether their presence is due to repeated spillovers from source populations. This study focuses on S. aureus in fish, testing the spillover hypothesis in two ways. First, we examined 12 S. aureus isolates obtained from the internal and external organs of a farmed fish. While all isolates were from clonal complex 45, genomic diversity indicates repeated acquisition. The presence of a φSa3 prophage containing human immune evasion genes suggests that the source was originally human. Second, we tested for S. aureus in wild fish that were isolated from likely sources. In particular, we sampled 123 brown trout and their environment at 16 sites in the remote Scottish Highlands with variable levels of exposure to humans, birds, and livestock. This screen found no S. aureus infection in any of the wild populations or their environment. Together, these results support that the presence of S. aureus in fish and aquaculture is due to spillover from humans rather than specialization. Given the trends of increasing fish consumption, a better understanding of the dynamics of S. aureus spillover in aquaculture will mitigate future risks to fish and human health. IMPORTANCE Staphylococcus aureus is a human and livestock commensal but also an important pathogen responsible for high human mortality rates and economic losses in farming. Recent studies show that S. aureus is common in wild animals, including fish. However, we do not know whether these animals are part of the normal host range of S. aureus or whether infection is due to repeated spillover events from true S. aureus hosts. Answering this question has implications for public health and conservation. We find support for the spillover hypothesis by combining genome sequencing of S. aureus isolates from farmed fish and screens for S. aureus in isolated wild populations. The results imply that fish are unlikely to be a source of novel emergent S. aureus strains but highlight the prominence of the spillover of antibiotic-resistant bacteria from humans and livestock. This may affect both future fish disease potential and the risk of human food poisoning.
Collapse
Affiliation(s)
- Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alicja Dabrowska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London
| | - Steve M. Kett
- Department of Natural Sciences, Middlesex University London, London, United Kingdom
| | - Andy J. A. Vick
- RAL Space (UKRI-STFC), Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Sofie C. Banister
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Peter Cunningham
- Wester Ross Fisheries Trust, Harbour Centre, Gairloch, Wester Ross, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
2
|
Palillo JA, Mollenkopf D, Marsh AE, Wittum TE, James JPB, Reichley SR, Ghosh S, Palillo MB, Malbrue R. Detection of Zoonotic Bacteria and Paragonimus kellicotti in Red Swamp Crayfish (Procambarus clarkii) and the Assessment of Traditional Crayfish Boils. J Food Prot 2022; 85:1388-1396. [PMID: 35588153 DOI: 10.4315/jfp-22-035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/17/2022] [Indexed: 02/03/2023]
Abstract
ABSTRACT Studies of red swamp crayfish (Procambarus clarkii) outside of the United States confirm the presence of a variety of zoonotic pathogens, but it is unknown whether these same pathogens occur in P. clarkii in the United States. The U.S. commercial crayfish industry generates $200 million yearly, underscoring the need to evaluate this consumer commodity. The study objectives were to evaluate specific zoonotic pathogens present on P. clarkii from Alabama and Louisiana, states in the southeastern United States, and to determine the effectiveness of traditional food preparation methods to reduce pathogens. Experiment A evaluated the presence of Escherichia coli, Salmonella, Staphylococcus aureus, and Vibrio spp. in crayfish and environmental samples over a 2-month collection period (May to June 2021). Crayfish sampling consisted of swabbing the cephalothorax region; 15 samples were tested for E. coli, Salmonella, and S. aureus, and an additional 15 samples for Vibrio spp. Additionally, crayfish shipping materials were sampled. In experiment B, 92 crayfish were evaluated for Paragonimus kellicotti. Experiment C compared live and boiled crayfish for the presence of Vibrio spp. In experiments A and B, all 60 (100%) crayfish samples and 13 (81.25%) of 16 environmental samples showed growth characteristic of Vibrio spp. Three (5%) of 60 samples showed E. coli growth, with no statistical difference (P = 0.5536) between farms. P. kellicotti, Salmonella, and S. aureus were not recovered from any samples. In experiment C, all 10 (100%) of the live preboiled crayfish samples showed characteristic growth, whereas 1 (10%) of 10 samples of crayfish boiled in unseasoned water showed Vibrio growth (P < 0.0001). These results confirm that Vibrio spp. and E. coli may be present on U.S. commercial crayfish and that care should be taken when handling any materials that come into contact with live crayfish because they can potentially be contaminated. HIGHLIGHTS
Collapse
Affiliation(s)
- Jack A Palillo
- College of Public Health, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210.,Animal Resources Core, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Dixie Mollenkopf
- Agricultural Food Safety and Security Lab, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210
| | - Antoinette E Marsh
- Department of Veterinary Preventive Medicine, The Ohio State University, Sisson Hall, 1920 Coffey Road, Columbus, Ohio 43210
| | - Thomas E Wittum
- Department of Veterinary Preventive Medicine, The Ohio State University, Sisson Hall, 1920 Coffey Road, Columbus, Ohio 43210
| | - Jesse P B James
- School of Fisheries, Aquaculture, & Aquatic Sciences, Auburn University, Greensboro, Alabama 36849
| | - Stephen R Reichley
- Department of Pathobiology and Population Medicine, Mississippi State University College of Veterinary Medicine, Mississippi State, Mississippi 39762
| | - Sumit Ghosh
- The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio 43215
| | - Michael B Palillo
- Memorial Sloan Kettering Cancer Center/Weill Cornell Medical/Rockefeller University/Hospital for Special Surgery, New York, New York 10065, USA
| | - Raphael Malbrue
- Animal Resources Core, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210
| |
Collapse
|
3
|
Huang Y, Nie XM, Zhu ZJ, Zhang X, Li BZ, Ge JC, Ren Q. A novel JNK induces innate immune response by activating the expression of antimicrobial peptides in Chinese mitten crab Eriocheir sinensis. Mol Immunol 2021; 138:76-86. [PMID: 34364075 DOI: 10.1016/j.molimm.2021.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/11/2021] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
c-Jun NH2-terminal kinase (JNK) is a member of mitogen-activated protein kinases (MAPKs) that participates in the regulation of various physiological and pathological processes. In this study, we identified a novel JNK (EsJNK) and determined the cDNA sequence of its isoform (EsJNK-a) from the Chinese mitten crab Eriocheir sinensis. The open reading frame (ORF) of EsJNK was predicted to encode 421 peptides with a serine/threonine protein kinase, a catalytic (S_TKc) domain, and a low complexity region. The ORF of EsJNK-a was 1380 bp encoding a protein with 459 amino acids, which was 38 amino acids more than that of EsJNK. The predicted tertiary structure of EsJNK was conserved and contained 15 α-helices and 10 β-sheets. Phylogenetic tree analysis revealed that EsJNK was clustered with the JNK homologs of other crustaceans. Quantitative real-time PCR assays showed that EsJNK was expressed in all the tissues examined, but it was relatively higher in hemocytes, muscles, and intestines. The expression of EsJNK mRNA in the hemocytes was upregulated by lipopolysaccharides and peptidoglycans, as well as by Staphylococcus aureus or Vibrio parahaemolyticus challenge. Functionally, after silencing EsJNK by siRNA in crabs, the expression levels of two antimicrobial peptides (AMPs), namely, anti-lipopolysaccharide factor and crustin, were significantly inhibited. The purified recombinant EsJNK protein with His-tag accelerated the elimination of the aforementioned bacteria in vivo. However, knockdown of EsJNK had an opposite effect. These findings suggested that EsJNK might be involved in the antibacterial immune defense of crabs by regulating the transcription of AMPs.
Collapse
Affiliation(s)
- Ying Huang
- College of Oceanography, Hohai University, 1 Xikang Road, Nanjing, 210098, China
| | - Xi-Mei Nie
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Zheng-Jie Zhu
- Nanjing University Ecology Research Institute of Changshu (NJUecoRICH), Changshu, 215500, China
| | - Xing Zhang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bing-Zhi Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Jia-Chun Ge
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Qian Ren
- College of Marine Science and Engineering, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China.
| |
Collapse
|
4
|
Dai X, Wang K, Zhang R, Zhang C, Cao X, Huang X, Zhang Y, Ren Q. Identification of two carcinin isoforms (MnCarc1 and MnCarc2) and their function in the antimicrobial immunity of Macrobrachium nipponense. FISH & SHELLFISH IMMUNOLOGY 2020; 106:205-217. [PMID: 32750545 DOI: 10.1016/j.fsi.2020.07.069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Carcinin, a member of the crustin family, plays important roles in crustacean innate immunity. In this study, we identified two carcinin isoforms (MnCarc1 and MnCarc2) produced by alternative splicing from Macrobrachium nipponense. The full length of MnCarc1 and MnCarc2 cDNA are 1554 and 1495 bp with 687 and 609 bp open reading frame-encoding proteins that contain 228 and 202 amino acids, respectively. The genome of carcinin has nine exons and eight introns. MnCarc1 transcript contains all nine exons, whereas MnCarc2 only contains eight exons and lacks exon 4. MnCarc1 and MnCarc2 proteins contain a signal peptide, cysteine-rich regions, and a whey acidic protein domain. The phylogenetic tree shows that MnCarc1 and MnCarc2 are not grouped with other crustins and carcinins. MnCarc1 and MnCarc2 form a subgroup. MnCarc1 and MnCarc2 are widely distributed in various tissues. The expression of MnCarc1 and MnCarc2 were evidently upregulated at multiple time points in hemocytes and the intestine of M. nipponense after white spot syndrome virus, Vibrio parahaemolyticus, and Staphylococcus aureus challenges. Further studies showed that knockdown of MnDorsal or MnStat transcription factor could remarkably inhibit the upregulated expression of MnCarc1 and MnCarc2 caused by viral or bacterial challenges. In addition, recombinant MnCarc1 and MnCarc2 proteins could bind to various bacteria and polysaccharides and inhibit the growth of S. aureus and V. parahaemolyticus in vitro. This study indicated that carcinins from M. nipponense were involved in prawns innate immunity.
Collapse
Affiliation(s)
- Xiaoling Dai
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Kaiqiang Wang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Ruidong Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chao Zhang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xueying Cao
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Xin Huang
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| | - Yufei Zhang
- Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China.
| | - Qian Ren
- Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Agriculture Ministry Key Laboratory of Healthy Freshwater Aquaculture, Key Laboratory of Freshwater Aquaculture Genetic and Breeding of Zhejiang Province, Zhejiang Institute of Freshwater Fisheries, Huzhou, 313001, China; Co-Innovation Center for Marine Bio-Industry Technology of Jiangsu Province, Lianyungang, Jiangsu Province, 222005, China.
| |
Collapse
|
5
|
Matuszewska M, Murray GGR, Harrison EM, Holmes MA, Weinert LA. The Evolutionary Genomics of Host Specificity in Staphylococcus aureus. Trends Microbiol 2020; 28:465-477. [PMID: 31948727 DOI: 10.1016/j.tim.2019.12.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/18/2019] [Accepted: 12/09/2019] [Indexed: 12/31/2022]
Abstract
Staphylococcus aureus is an important human bacterial pathogen that has a cosmopolitan host range, including livestock, companion and wild animal species. Genomic and epidemiological studies show that S. aureus has jumped between host species many times over its evolutionary history. These jumps have involved the dynamic gain and loss of host-specific adaptive genes, usually located on mobile genetic elements. The same functional elements are often consistently gained in jumps into a particular species. Further sampling of diverse animal species is likely to uncover an even broader host range and greater genetic diversity of S. aureus than is already known, and understanding S. aureus host specificity in these hosts will mitigate the risks of emergent human and livestock strains.
Collapse
Affiliation(s)
- Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Gemma G R Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Ewan M Harrison
- Wellcome Sanger Institute, University of Cambridge, Cambridge, CB10 1SA, UK; Department of Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK; Department of Public Health and Primary Care, University of Cambridge, Cambridge, CB2 0SR, UK
| | - Mark A Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Lucy A Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK.
| |
Collapse
|