1
|
Aslam M, Pei P, Ye P, Li T, Liang H, Zhang Z, Ke X, Chen W, Du H. Unraveling the Diverse Profile of N-Acyl Homoserine Lactone Signals and Their Role in the Regulation of Biofilm Formation in Porphyra haitanensis-Associated Pseudoalteromonas galatheae. Microorganisms 2023; 11:2228. [PMID: 37764072 PMCID: PMC10537045 DOI: 10.3390/microorganisms11092228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
N-acyl homoserine lactones (AHLs) are small, diffusible chemical signal molecules that serve as social interaction tools for bacteria, enabling them to synchronize their collective actions in a density-dependent manner through quorum sensing (QS). The QS activity from epiphytic bacteria of the red macroalgae Porphyra haitanensis, along with its involvement in biofilm formation and regulation, remains unexplored in prior scientific inquiries. Therefore, this study explores the AHL signal molecules produced by epiphytic bacteria. The bacterium isolated from the surface of P. haitanensis was identified as Pseudoalteromonas galatheae by 16s rRNA gene sequencing and screened for AHLs using two AHL reporter strains, Agrobacterium tumefaciens A136 and Chromobacterium violaceum CV026. The crystal violet assay was used for the biofilm-forming phenotype. The inferences revealed that P. galatheae produces four different types of AHL molecules, i.e., C4-HSL, C8-HSL, C18-HSL, and 3-oxo-C16-HSL, and it was observed that its biofilm formation phenotype is regulated by QS molecules. This is the first study providing insights into the QS activity, diverse AHL profile, and regulatory mechanisms that govern the biofilm formation phenotype of P. galatheae. These findings offer valuable insights for future investigations exploring the role of AHL producing epiphytes and biofilms in the life cycle of P. haitanensis.
Collapse
Affiliation(s)
- Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water and Marine Sciences, Uthal 90150, Pakistan
| | - Pengbing Pei
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Peilin Ye
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Tangcheng Li
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Honghao Liang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Zezhi Zhang
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Xiao Ke
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, College of Science, Shantou University, Shantou 515063, China; (M.A.); (P.P.); (P.Y.); (T.L.); (H.L.); (Z.Z.); (X.K.); (W.C.)
- STU-UNIVPM Joint Algal Research Center, College of Science, Shantou University, Shantou 515063, China
| |
Collapse
|
2
|
Guzman JPMD, De las Alas TPL, Lucban MC, Sevilla CEC. Green tea ( Camellia sinensis) extract inhibits biofilm formation in acyl homoserine lactone-producing, antibiotic-resistant Morganella morganii isolated from Pasig River, Philippines. Heliyon 2020; 6:e05284. [PMID: 33134581 PMCID: PMC7586116 DOI: 10.1016/j.heliyon.2020.e05284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 08/12/2020] [Accepted: 10/14/2020] [Indexed: 12/25/2022] Open
Abstract
The drastic development of urban districts around the world has caused changes in the environment, specifically on metropolitan waterways such as the Pasig River in the Philippines. These significant changes resulted in diversity of microorganisms and their mechanisms employed such as antibiotic resistance and their communication system or quorum sensing (QS). In this study, four bacterial isolates from Pasig River, identified as Aeromonas salmonicida, Acinetobacter sp., Morganella morganii, and Citrobacter freundii, were observed to employ short-chain acyl homoserine lactone (AHL) as their signalling molecule based on in vitro assays using the biosensor strain Chromobacterium violaceum CV026. Furthermore, M. morganii isolate was shown to be resistant to chloramphenicol. This poses a significant threat not just to public health but also to the aquatic life present in the river. Thus, green tea (Camellia sinensis) extract was tested for its capability to inhibit in vitro biofilm formation in M. morganii, as well as the short-chain acyl homoserine lactone QS system using C. violaceum ATCC 12472. Results showed that the extract significantly (p < 0.05) inhibited biofilm formation in M. morganii at as low as 62.5 μg/mL (31.55%). Increasing the concentration (500 μg/mL) did not significantly (p > 0.05) enhance the activity (41.21%). Furthermore, the extract also inhibited pigmentation in C. violaceum ATCC 12472, suggesting QS inhibition. This study adds into record the production of short-chain AHLs by Aeromonas salmonicida, Acinetobacter sp., Morganella morganii, and Citrobacter freundii, as well as the potential of green tea extract as inhibitor of biofilm formation in antibiotic-resistant M. morganii possibly through QS inhibition.
Collapse
Affiliation(s)
- John Paul Matthew D. Guzman
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Environment and Biotechnology Division, Industrial Technology Development Institute, Department of Science and Technology, Taguig City, Philippines
| | - Trisha Pamela L. De las Alas
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Globetek Science Foundation, Inc., Makati City, Philippines
| | - Margie C. Lucban
- The Graduate School, University of Santo Tomas, Manila, Philippines
| | - Christine Eden C. Sevilla
- The Graduate School, University of Santo Tomas, Manila, Philippines
- Service Laboratory, Food and Nutrition Research Institute, Department of Science and Technology, Taguig City, Philippines
| |
Collapse
|
3
|
Šegan S, Opsenica D, Milojković-Opsenica D. Thin-layer chromatography in medicinal chemistry. J LIQ CHROMATOGR R T 2019. [DOI: 10.1080/10826076.2019.1585615] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Šegan
- ICTM – Department of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Dejan Opsenica
- ICTM – Department of Chemistry, University of Belgrade, Belgrade, Serbia
| | | |
Collapse
|
4
|
Kher HL, Krishnan T, Letchumanan V, Hong KW, How KY, Lee LH, Tee KK, Yin WF, Chan KG. Characterization of quorum sensing genes and N-acyl homoserine lactones in Citrobacter amalonaticus strain YG6. Gene 2018; 684:58-69. [PMID: 30321658 DOI: 10.1016/j.gene.2018.10.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/27/2018] [Accepted: 10/11/2018] [Indexed: 11/26/2022]
Abstract
In the phylum of Proteobacteria, quorum sensing (QS) system is widely driven by synthesis and response of N-acyl homoserine lactone (AHL) signalling molecules. AHL is synthesized by LuxI homologue and sensed by LuxR homologue. Once the AHL concentration achieves a threshold level, it triggers the regulation of target genes. In this study, QS activity of Citrobacter amalonaticus strain YG6 which was isolated from clams was investigated. In order to characterise luxI/R homologues, the genome of C. amalonaticus strain YG6 (4.95 Mbp in size) was sequenced using Illumina MiSeq sequencer. Through in silico analysis, a pair of canonical luxI/R homologues and an orphan luxR homologue were identified and designated as camI, camR, and camR2, respectively. A putative lux box was identified at the upstream of camI. The camI gene was cloned and overexpressed in E. coli BL21 (DE3)pLysS. High-resolution triple quadrupole liquid chromatography mass spectrometry (LC-MS/MS) analysis verified that the CamI is a functional AHL synthase which produced multiple AHL species, namely N‑butyryl‑l‑homoserine lactone (C4-HSL), N‑hexanoyl‑l‑homoserine lactone (C6-HSL), N‑octanoyl‑l‑homoserine lactone (C8-HSL), N‑tetradecanoyl‑l‑homoserine lactone (C14-HSL) and N‑hexadecanoyl‑l‑homoserine lactone (C16-HSL) in C. amalonaticus strain YG6 and camI gene in recombinant E. coli BL21(DE3)pLysS. To our best knowledge, this is the first functional study report of camI as well as the first report describing the production of C14-HSL by C. amalonaticus.
Collapse
Affiliation(s)
- Heng-Leong Kher
- Institute of Graduate Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Thiba Krishnan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Vengadesh Letchumanan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia
| | - Kar-Wai Hong
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kah-Yan How
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Learn-Han Lee
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Kok-Keng Tee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Wai-Fong Yin
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Science, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
5
|
Huang X, Zhu J, Cai Z, Lao Y, Jin H, Yu K, Zhang B, Zhou J. Profiles of quorum sensing (QS)-related sequences in phycospheric microorganisms during a marine dinoflagellate bloom, as determined by a metagenomic approach. Microbiol Res 2018; 217:1-13. [PMID: 30384903 DOI: 10.1016/j.micres.2018.08.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/26/2018] [Accepted: 08/29/2018] [Indexed: 01/09/2023]
Abstract
The complicated relationships among environmental microorganisms are regulated by quorum sensing (QS). Understanding QS-based signals could shed light on the interactions between microbial communities in certain environments. Although QS characteristics have been widely discussed, few studies have been conducted on the role of QS in phycospheric microorganisms. Here, we used metagenomics to examine the profile of AI-1 (AinS, HdtS, LuxI) and AI-2 (LuxS) autoinducers from a deeply sequenced microbial database, obtained from a complete dinoflagellate bloom. A total of 3001 putative AI-1 homologs and 130 AI-2 homologs were identified. The predominant member among the AI groups was HdtS. The abundance of HdtS, AinS, and LuxS increased as the bloom developed, whereas the abundance of LuxI showed the opposite trend. Phylogenetic analysis suggested that HdtS and LuxI synthase originated mainly from alpha-, beta-, and gamma-Proteobacteria, whereas AinS synthase originated solely from Vibrionales. In comparison to AI-1, the sequences related to AI-2 (LuxS) demonstrated a much wider taxonomic coverage. Some significant correlations were found between dominant species and QS signals. In addition to the QS, we also performed parallel analysis of the quorum quenching (QQ) sequences. In comparison to QS, the relative abundance of QQ signals was lower; however, an obvious frequency correlation was observed. These results suggested that QS and QQ signals co-participate in regulating microbial communities during an algal bloom. These data helped to reveal the characteristic behavior of algal symbiotic bacteria, and facilitated a better understanding of microbial dynamics during an algal bloom event from a chemical ecological perspective.
Collapse
Affiliation(s)
- Xinqing Huang
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Jianming Zhu
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Zhonghua Cai
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Yongmin Lao
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Hui Jin
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China
| | - Ke Yu
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Boya Zhang
- The Division of Environment and Energy, Graduate School at Shenzhen, Peking University, Guangdong Province, Shenzhen, China
| | - Jin Zhou
- Shenzhen Public Platform for Screening and Application of Marine Microbial Resources, The Graduate School at Shenzhen, Tsinghua University, Guangdong Province, Shenzhen, China.
| |
Collapse
|
6
|
Ma ZP, Lao YM, Jin H, Lin GH, Cai ZH, Zhou J. Diverse Profiles of AI-1 Type Quorum Sensing Molecules in Cultivable Bacteria from the Mangrove ( Kandelia obovata) Rhizosphere Environment. Front Microbiol 2016; 7:1957. [PMID: 27994584 PMCID: PMC5136546 DOI: 10.3389/fmicb.2016.01957] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 11/22/2016] [Indexed: 11/25/2022] Open
Abstract
Mangrove rhizosphere environment harbors diverse populations of microbes, and some evidence showed that rhizobacteria behavior was regulated by quorum sensing (QS). Investigating the diverse profiles of QS molecules in mangrove ecosystems may shed light on the bacterial roles and lead to a better understanding of the symbiotic interactions between plants and microbes. The aims of the current study focus on identifying AI-1 type QS signals, i.e., acyl homoserine lactones (AHLs), in Kandelia obovata rhizosphere environment. Approximately 1200 rhizobacteria were screened and 184 strains (15.3%) tested were positive. Subsequent 16s rRNA gene sequencing and dereplication analyses identified 24 species from the positive isolates, which were affiliated to three different phyla, including Proteobacteria, Firmicutes, and Actinobacteria. Thin-layer chromatography separation of extracts revealed diverse AHL profiles and detected at least one active compound in the supernatant of these 24 cultivable AHL-producers. The active extracts from these bacterial isolates were further evaluated by ultra performance liquid chromatography-mass spectrometry, and the carbon side chain length ranged from C4 to C14. This is the first report on the diversity of AI-1 type auto-inducers in the mangrove plant K. obovata, and it is imperative to expand our knowledge of plant-bacteria interactions with respect to the maintenance of wetland ecosystem health.
Collapse
Affiliation(s)
- Zhi P Ma
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China; Shenzhen Public Platform for Screening and Application of Marine Microbial ResourcesShenzhen, China
| | - Yong M Lao
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China; Shenzhen Public Platform for Screening and Application of Marine Microbial ResourcesShenzhen, China
| | - Hui Jin
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China; Shenzhen Public Platform for Screening and Application of Marine Microbial ResourcesShenzhen, China
| | - Guang H Lin
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua University Shenzhen, China
| | - Zhong H Cai
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China; Shenzhen Public Platform for Screening and Application of Marine Microbial ResourcesShenzhen, China
| | - Jin Zhou
- The Division of Ocean Science and Technology, Graduate School at Shenzhen, Tsinghua UniversityShenzhen, China; Shenzhen Public Platform for Screening and Application of Marine Microbial ResourcesShenzhen, China
| |
Collapse
|