1
|
Borsodi AK, Megyes M, Zsigmond T, Horel Á. Soil bacterial communities affected by land-use types in a small catchment area of the Balaton Uplands (Hungary). Biol Futur 2024; 75:313-325. [PMID: 39066977 DOI: 10.1007/s42977-024-00233-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/14/2024] [Indexed: 07/30/2024]
Abstract
Changes resulting from different tillage practices can affect the structure of microbial communities, thereby altering soil ecosystems and their functioning. The aim of this study was to explore and compare the physical, chemical properties and bacterial community composition of soils from different land use types (forest, grassland, vineyard, and arable field) in a small catchment. 16S rRNA gene-based amplicon sequencing was used to reveal the taxonomic diversity of summer and autumn soil samples taken from two different slope positions. The greater the anthropogenic impact was on the type of land use, the greater the change was in soil physical and chemical parameters. All sample types were dominated by the phyla Pseudomonadota, Acidobacteriota, Actinobacteriota, Bacteroidota and Verrucomicrobiota. Differences in the relative abundance of various bacterial taxa reflected the different land use types, the seasonality, and the topography. These diversity changes were consistent with the differences in soil properties.
Collapse
Affiliation(s)
- Andrea K Borsodi
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary.
- HUN-REN Centre for Ecological Research, Institute of Aquatic Ecology, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Department of Microbiology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, Budapest, 1117, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
| | - Tibor Zsigmond
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Egyetem tér 1-3, Budapest, 1053, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| | - Ágota Horel
- HUN-REN Centre for Agricultural Research, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
- HUN-REN Centre for Agricultural Research, National Laboratory for Water Science and Water Security, Institute for Soil Sciences, Ruszti út 2-4, Budapest, 1022, Hungary
| |
Collapse
|
2
|
Mucsi M, Borsodi AK, Megyes M, Szili-Kovács T. Response of the metabolic activity and taxonomic composition of bacterial communities to mosaically varying soil salinity and alkalinity. Sci Rep 2024; 14:7460. [PMID: 38553497 PMCID: PMC10980690 DOI: 10.1038/s41598-024-57430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Soil salinity and sodicity is a worldwide problem that affects the composition and activity of bacterial communities and results from elevated salt and sodium contents. Depending on the degree of environmental pressure and the combined effect of other factors, haloalkalitolerant and haloalkaliphilic bacterial communities will be selected. These bacteria play a potential role in the maintenance and restoration of salt-affected soils; however, until recently, only a limited number of studies have simultaneously studied the bacterial diversity and activity of saline-sodic soils. Soil samples were collected to analyse and compare the taxonomic composition and metabolic activity of bacteria from four distinct natural plant communities at three soil depths corresponding to a salinity‒sodicity gradient. Bacterial diversity was detected using 16S rRNA gene Illumina MiSeq amplicon sequencing. Community-level physiological profiles (CLPPs) were analysed using the MicroResp™ method. The genus-level bacterial composition and CLPPs differed significantly in soils with different alkaline vegetation. The surface soil samples also significantly differed from the intermediate and deep soil samples. The results showed that the pH, salt content, and Na+ content of the soils were the main edaphic factors influencing both bacterial diversity and activity. With salinity and pH, the proportion of the phylum Gemmatimonadota increased, while the proportions of Actinobacteriota and Acidobacteriota decreased.
Collapse
Affiliation(s)
- Márton Mucsi
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
| | - Andrea K Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary.
- Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29, Budapest, 1113, Hungary.
| | - Melinda Megyes
- Doctoral School of Environmental Sciences, ELTE Eötvös Loránd University, Pázmány P. sétány 1/AC, Budapest, 1117, Hungary
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. sétány 1/C, Budapest, 1117, Hungary
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, HUN-REN Centre for Agricultural Research, Herman Ottó út 15, Budapest, 1022, Hungary.
| |
Collapse
|
3
|
Quijia Pillajo J, Chapin LJ, Quiroz-Moreno CD, Altland JE, Jones ML. Nutrient availability and plant phenological stage influence the substrate microbiome in container-grown Impatiens walleriana 'Xtreme Red'. BMC PLANT BIOLOGY 2024; 24:176. [PMID: 38448825 PMCID: PMC10916185 DOI: 10.1186/s12870-024-04854-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The microbiome plays a fundamental role in plant health and performance. Soil serves as a reservoir of microbial diversity where plants attract microorganisms via root exudates. The soil has an important impact on the composition of the rhizosphere microbiome, but greenhouse ornamental plants are commonly grown in soilless substrates. While soil microbiomes have been extensively studied in traditional agriculture to improve plant performance, health, and sustainability, information about the microbiomes of soilless substrates is still limited. Thus, we conducted an experiment to explore the microbiome of a peat-based substrate used in container production of Impatiens walleriana, a popular greenhouse ornamental plant. We investigated the effects of plant phenological stage and fertilization level on the substrate microbiome. RESULTS Impatiens plants grown under low fertilization rates were smaller and produced more flowers than plants grown under optimum and high fertilization. The top five bacterial phyla present in the substrate were Proteobacteria, Actinobacteria, Bacteriodota, Verrucomicrobiota, and Planctomycetota. We found a total of 2,535 amplicon sequence variants (ASV) grouped into 299 genera. The substrate core microbiome was represented by only 1.8% (48) of the identified ASV. The microbiome community composition was influenced by plant phenological stage and fertilizer levels. Phenological stage exhibited a stronger influence on microbiome composition than fertilizer levels. Differential abundance analysis using DESeq2 identified more ASVs significantly affected (enriched or depleted) in the high fertilizer levels at flowering. As observed for community composition, the effect of plant phenological stage on microbial community function was stronger than fertilizer level. Phenological stage and fertilizer treatments did not affect alpha-diversity in the substrate. CONCLUSIONS In container-grown ornamental plants, the substrate serves as the main microbial reservoir for the plant, and the plant and agricultural inputs (fertilization) modulate the microbial community structure and function of the substrate. The differences observed in substrate microbiome composition across plant phenological stage were explained by pH, total organic carbon (TOC) and fluoride, and across fertilizer levels by pH and phosphate (PO4). Our project provides an initial diversity profile of the bacteria occurring in soilless substrates, an underexplored source of microbial diversity.
Collapse
Affiliation(s)
- Juan Quijia Pillajo
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Laura J Chapin
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Cristian D Quiroz-Moreno
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
| | - James E Altland
- Application Technology Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service, Wooster, OH, 44691, USA
| | - Michelle L Jones
- Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA.
| |
Collapse
|
4
|
Ren X, Whitton MM, Yu SJ, Trotter T, Bajagai YS, Stanley D. Application of Phytogenic Liquid Supplementation in Soil Microbiome Restoration in Queensland Pasture Dieback. Microorganisms 2023; 11:microorganisms11030561. [PMID: 36985135 PMCID: PMC10054416 DOI: 10.3390/microorganisms11030561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Pasture production is vital in cattle farming as it provides animals with food and nutrients. Australia, as a significant global beef producer, has been experiencing pasture dieback, a syndrome of deteriorating grassland that results in the loss of grass and the expansion of weeds. Despite two decades of research and many remediation attempts, there has yet to be a breakthrough in understanding the causes or mechanisms involved. Suggested causes of this phenomenon include soil and plant microbial pathogens, insect infestation, extreme heat stress, radiation, and others. Plants produce a range of phytomolecules with antifungal, antibacterial, antiviral, growth-promoting, and immunostimulant effects to protect themselves from a range of environmental stresses. These products are currently used more in human and veterinary health than in agronomy. In this study, we applied a phytogenic product containing citric acid, carvacrol, and cinnamaldehyde, to investigate its ability to alleviate pasture dieback. The phytogenic liquid-based solution was sprayed twice, one week apart, at 5.4 L per hectare. The soil microbial community was investigated longitudinally to determine long-term effects, and pasture productivity and plant morphometric improvements were explored. The phytogenic liquid significantly improved post-drought recovery of alpha diversity and altered temporal and spatial change in the community. The phytogenic liquid reduced biomarker genera associated with poor and polluted soils and significantly promoted plant and soil beneficial bacteria associated with plant rhizosphere and a range of soil benefits. Phytogenic liquid application produced plant morphology improvements and a consistent enhancement of pasture productivity extending beyond 18 months post-application. Our data show that phytogenic products used in the livestock market as an alternative to antibiotics may also have a beneficial role in agriculture, especially in the light of climate change-related soil maintenance and remediation.
Collapse
|
5
|
Bello A, Liu W, Chang N, Erinle KO, Deng L, Egbeagu UU, Babalola BJ, Yue H, Sun Y, Wei Z, Xu X. Deciphering biochar compost co-application impact on microbial communities mediating carbon and nitrogen transformation across different stages of corn development. ENVIRONMENTAL RESEARCH 2023; 219:115123. [PMID: 36549490 DOI: 10.1016/j.envres.2022.115123] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/27/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Under current climatic conditions, developing eco-friendly and climate-smart fertilizers has become increasingly important.The co-application of biochar and compost on agricultural soils has received considerable attention recently.Unfortunately, little is known about its effects on specific microbial taxa involved in carbon and nitrogen transformation in the soil.Herein, we report the efficacy of applying biochar-based amendments on soil physicochemical indices, enzymatic activity, functional genes, bacterial community, and their network patterns in corn rhizosphere at seedling (SS), flowering (FS), and maturity (MS) stages.The applied treatments were: compost alone (COM), biochar alone (BIOC), composted biochar (CMB), fortified compost (CMWB), and the control (no fertilizer (CNTRL).The non-metric multidimensional scaling (NMDS) indicated total nitrogen (TN), pH, NO3--N, urease, protease, and microbial biomass C (MBC) as the dominant environmental factors driving soil bacteria in this study.The dominant N mediating genes belonged to nitrate reductase (narG) and nitronate monooxygenase (amo), while beta-galactosidase, catalase, and alpha-amylase were the dominant genes observed relating to C cycling.Interestingly, the abundance of these genes was higher in COM, CMWB, and CMB compared with the CNTRL and BIOC treatments.The bacteria network properties of CWMB and CMB indicated robust niche overlap associated with high cross-feeding between bacterial communities compared to other treatments.Path and stepwise regression analyses revealed norank_Reyranellaceae and Sphingopyxis in CMWB as the major bacterial genera and the major predictive indices mediating soil organic C (SOC), NH4+-N, NO3--N, and TN transformation.Overall, biochar with compost amendments improved soil nutrient conditions, regulated the composition of the bacterial community, and benefited C/N cycling in the soil ecosystem.
Collapse
Affiliation(s)
- Ayodeji Bello
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China; College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Wanying Liu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Nuo Chang
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Kehinde Olajide Erinle
- School of Agriculture, Food and Wine, Faculty of Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Liting Deng
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Ugochi Uzoamaka Egbeagu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Busayo Joshua Babalola
- Department of Plant Biology and Plant Pathology, University of Georgia, Athens, Georgia, 30602, USA
| | - Han Yue
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Yu Sun
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Xiuhong Xu
- College of Resources and Environment, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
6
|
Humate application alters microbiota-mineral interactions and assists in pasture dieback recovery. Heliyon 2023; 9:e13327. [PMID: 36755593 PMCID: PMC9900373 DOI: 10.1016/j.heliyon.2023.e13327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 01/25/2023] [Accepted: 01/26/2023] [Indexed: 02/01/2023] Open
Abstract
Pasture dieback is a rapidly expanding decaying pasture syndrome that affects millions of hectares of agricultural land in Queensland, Australia, making it useless for the cattle industry and decimating farmers' income and welfare. Since the syndrome was first identified in the early 1990s, farmers and agronomists have tried various methods for pasture recovery, including slashing, burning, ploughing and resowing grass, fertilising, destocking, and overstocking. In most cases, after a minimal initial improvement, the grass reverts to dieback within a few weeks. Here, we present an application of potassium humate, a well-known plant growth stimulator, as a possible long-term recovery option. Humate was applied once at the rate of 12 ml per m2. Humate application did not alter the alpha or beta diversity of soil bacterial communities, nor did it change the mineral profile in the soil. However, humate application altered soil microbiota-mineral temporal interactions and introduced subtle changes in the microbial community that could assist pasture recovery. A single humate application increased paddock plant biomass significantly up to 20 weeks post-application. Eleven months after the single application, the paddock was grazed to the ground by the cattle just before the rainfall season. After pasture regrowth, the humate-treated plots significantly improved root morphometric indicators for both grass and dicots and increased the ratio of grass/weeds by 27.6% compared to the water-treated control. While this treatment will not resolve the dieback syndrome, our results invite more research to optimise the use of humate for maximum economic benefit in paddock use under pasture dieback syndrome conditions.
Collapse
|
7
|
Man B, Xiang X, Zhang J, Cheng G, Zhang C, Luo Y, Qin Y. Keystone Taxa and Predictive Functional Analysis of Sphagnum palustre Tank Microbiomes in Erxianyan Peatland, Central China. BIOLOGY 2022; 11:1436. [PMID: 36290340 PMCID: PMC9598613 DOI: 10.3390/biology11101436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Sphagnum is a fundamental ecosystem of engineers, including more than 300 species around the world. These species host diverse microbes, either endosymbiotic or ectosymbiotic, and are key to carbon sequestration in peatland ecosystems. However, the linkages between different types of Sphagnum and the diversity and ecological functions of Sphagnum-associated microbiomes are poorly known, and so are their joint responses to ecological functions. Here, we systematically investigated endophytes in Sphagnum palustre via next-generation sequencing (NGS) techniques in the Erxianyan peatland, central China. The total bacterial microbiome was classified into 38 phyla and 55 classes, 122 orders and 490 genera. The top 8 phyla of Proteobacteria (33.69%), Firmicutes (11.94%), Bacteroidetes (9.42%), Actinobacteria (6.53%), Planctomycetes (6.37%), Gemmatimonadetes (3.05%), Acidobacteria (5.59%) and Cyanobacteria (1.71%) occupied 78.31% of total OTUs. The core microbiome of S. palustre was mainly distributed mainly in 7 phyla, 9 classes, 15 orders, 22 families and 43 known genera. There were many differences in core microbiomes compared to those in the common higher plants. We further demonstrate that the abundant functional groups have a substantial potential for nitrogen fixation, carbon cycle, nitrate metabolism, sulfate respiration and chitinolysis. These results indicate that potential ecological function of Sphagnum palustre in peatlands is partially rooted in its microbiomes, and that incorporating into functional groups of Sphagnum-associated microbiomes can promote mechanistic understanding of Sphagnum ecology in subalpine peatlands.
Collapse
Affiliation(s)
- Baiying Man
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Xing Xiang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Junzhong Zhang
- Key Laboratory of Forest Disaster Warning and Control in Yunnan Higher Education Institutions, South West Forestry University, Kunming 650224, China
| | - Gang Cheng
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Chao Zhang
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yang Luo
- College of Life Science, Shangrao Normal University, Shangrao 334001, China
| | - Yangmin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
8
|
Bai Z, Zheng L, Bai Z, Jia A, Wang M. Long-term cultivation alter soil bacterial community in a forest-grassland transition zone. Front Microbiol 2022; 13:1001781. [PMID: 36246280 PMCID: PMC9557053 DOI: 10.3389/fmicb.2022.1001781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Changes in land use types can significantly affect soil porperties and microbial community composition in many areas. However, the underlying mechanism of shift in bacterial communities link to soil properties is still unclear. In this study, Illumina high-throughput sequencing was used to analyze the changes of soil bacterial communities in different land use types in a forest-grassland transition zone, North China. There are two different land use types: grassland (G) and cultivated land (CL). Meanwhile, cultivated land includes cultivated of 10 years (CL10) or 20 years (CL20). Compared with G, CL decreased soil pH, SOC and TN, and significantly increased soil EC, P and K, and soil properties varied significantly with different cultivation years. Grassland reclamation increases the diversity of bacterial communities, the relative abundance of Proteobacteria, Gemmatimonadetes and Bacteroidetes increased, while that of Actinobacteria, Acidobacteria, Rokubacteria and Verrucomicrobia decreased. However, the relative abundance of Proteobacteria decreased and the relative abundance of Chloroflexi and Nitrospirae increased with the increase of cultivated land years. Mantel test and RDA analysis showed that TP, AP, SOC and EC were the main factors affecting the diversity of composition of bacterial communities. In conclusion, soil properties and bacterial communities were significantly altered after long-term cultivation. This study provides data support for land use and grassland ecological protection in this region.
Collapse
|
9
|
Li W, Lei X, Zhang R, Cao Q, Yang H, Zhang N, Liu S, Wang Y. Shifts in rhizosphere microbial communities in Oplopanax elatus Nakai are related to soil chemical properties under different growth conditions. Sci Rep 2022; 12:11485. [PMID: 35798802 PMCID: PMC9262954 DOI: 10.1038/s41598-022-15340-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Plant growth environment plays an important role in shaping soil microbial communities. To understand the response of soil rhizosphere microbial communities in Oplopanax elatus Nakai plant to a changed growth conditions from natural habitation to cultivation after transplant. Here, a comparative study of soil chemical properties and microbial community using high-throughput sequencing was conducted under cultivated conditions (CT) and natural conditions (WT), in Changbai Mountain, Northeast of China. The results showed that rhizosphere soil in CT had higher pH and lower content of soil organic matter (SOM) and available nitrogen compared to WT. These changes influenced rhizosphere soil microbial communities, resulting in higher soil bacterial and fungi richness and diversity in CT soil, and increased the relative abundance of bacterial phyla Acidobacteria, Chloroflexi, Gemmatimonadetes, Firmicutes and Patescibacteria, and the fungi phyla Mortierellomycota and Zoopagomycota, while decreased bacterial phyla Actinobacteria, WPS-2, Gemmatimonadetes, and Verrucomicrobia, and the fungi phyla Ascomycota, and Basidiomycota. Redundancy analysis analysis indicated soil pH and SOM were the primarily environmental drivers in shaping the rhizosphere soil microbial community in O. elatus under varied growth conditions. Therefore, more attention on soil nutrition management especially organic fertilizer inputs should be paid in O. elatus cultivation.
Collapse
Affiliation(s)
- Wanying Li
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Xiujuan Lei
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Rui Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Qingjun Cao
- Jilin Academy of Agriculture Science, Changchun, 130033, People's Republic of China.
| | - He Yang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Nanqi Zhang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Shuangli Liu
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China.,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China
| | - Yingping Wang
- College of Chinese Medicinal Materials, Jilin Agriculture University, Changchun, 130118, People's Republic of China. .,National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, 130118, People's Republic of China.
| |
Collapse
|
10
|
Peng M, Wang C, Wang Z, Huang X, Zhou F, Yan S, Liu X. Differences between the effects of plant species and compartments on microbiome composition in two halophyte Suaeda species. Bioengineered 2022; 13:12475-12488. [PMID: 35593105 PMCID: PMC9275862 DOI: 10.1080/21655979.2022.2076009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Root-related or endophytic microbes in halophytes play an important role in adaptation to extreme saline environments. However, there have been few comparisons of microbial distribution patterns in different tissues associated with halophytes. Here, we analyzed the bacterial communities and distribution patterns of the rhizospheres and tissue endosphere in two Suaeda species (S. salsa and S. corniculata Bunge) using the 16S rRNA gene sequencing. The results showed that the bacterial abundance and diversity in the rhizosphere were significantly higher than that of endophytic, but lower than that of bulk soil. Microbial-diversity analysis showed that the dominant phyla of all samples were Proteobacteria, Actinobacteria, Bacteroidetes, Acidobacteria and Firmicutes, among which Proteobacteria were extremely abundant in all the tissue endosphere. Heatmap and Linear discriminant analysis Effect Size (LEfSe) results showed that there were notable differences in microbial community composition related to plant compartments. Different networks based on plant compartments exhibited distinct topological features. Additionally, the bulk soil and rhizosphere networks were more complex and showed higher centrality and connectedness than the three endosphere networks. These results strongly suggested that plant compartments, and not species, affect microbiome composition.
Collapse
Affiliation(s)
- Mu Peng
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China.,College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Chao Wang
- Zibo Academy of Agricultural Sciences, Zibo, China
| | - Zhiyong Wang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Xiufang Huang
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Fangzhen Zhou
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| | - Shaopeng Yan
- College of Life Sciences, Northeast Forestry University, Harbin, China
| | - Xiaopeng Liu
- College of Biological Science and Technology, Hubei Minzu University, Hubei, China
| |
Collapse
|
11
|
Zhang C, Zhou X, Wang X, Ge J, Cai B. Elaeagnus angustifolia can improve salt-alkali soil and the health level of soil: Emphasizing the driving role of core microbial communities. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 305:114401. [PMID: 34974219 DOI: 10.1016/j.jenvman.2021.114401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
Saline-alkali environments are widely distributed in China and significantly hinder the development of agriculture. This study characterizes the long-term effects of planting Elaeagnus angustifolia (E. angustifolia) on the physical and chemical properties, enzyme activities and microbial community characteristics of saline-alkali soil in the Songnen Plain (1, 2 and 3 years). The results showed that planting E. angustifolia reduced soil pH and electrical conductivity (EC) and increased soil total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (Nni), total potassium (TK), dissolved organic C (DOC), dissolved organic matter (DOM) and available potassium (AK) content and catalase, urease, polyphenol oxidase, phosphatase, sucrase and cellulase enzyme activities, and the results peaked in the 3 year. High-throughput sequencing showed that the bacterial abundance and diversity were as follows (from high to low) y3 > y2 > y1 > CK. E. angustifolia resulted in an increase in the relative abundance of the dominant bacteria. Proteobacteria and Pseudomonas were the major phylum and genus, respectively. Redundancy analysis showed that changes in the soil microbial community significantly affect the physical and chemical properties of the soil, with Proteobacteria members being the key microorganisms that reduce soil salinity. Network analysis showed that Pseudomonas (Proteobacteria) participated in the synthesis of key soil enzymes. 16S rRNA sequencing predicted that the expression of genes related to carbon (rbcL, acsA, acsB, Pcc and accA) and nitrogen (amoA/B, nxrA, hao, gdh, ureC and nosZ) transformation increased, and Pseudomonas members were key regulators of carbon and nitrogen dynamics. In conclusion, the planting of E. angustifolia could improve the physical and chemical properties of the soil by releasing root exudates into the soil and increasing the diversity and richness of soil microbial communities to improve saline-alkali soil, providing a theoretical basis for improving saline-alkali soil and promoting the sustainable development of modern agriculture.
Collapse
Affiliation(s)
- Chi Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xiaohang Zhou
- College of Basic Medicine, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Xiaoyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Jingping Ge
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Baiyan Cai
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Key Laboratory of Microbiology, College of Heilongjiang Province, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| |
Collapse
|
12
|
Yu Y, Liu L, Wang J, Zhang Y, Xiao C. Effects of warming on the bacterial community and its function in a temperate steppe. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148409. [PMID: 34146803 DOI: 10.1016/j.scitotenv.2021.148409] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 06/12/2023]
Abstract
As a significant environmental issue, global warming will have a significant impact on soil microorganisms, especially soil bacteria. However, the effects of warming on the network structure of bacterial communities and the function of ecosystems remain unclear. Therefore, we examined the effects of three-year simulated field warming on the complexity of soil bacterial communities and predicted functions in a temperate steppe of Inner Mongolia. Warming significantly increased the α-diversity of bacteria in 2018 but did not affect it in 2019 and 2020. Warming increased network complexity and stability and keystone taxa, and these bacterial taxa also associated more closely with each other, indicating that the protection of interactions between bacterial taxa is very important for the conservation of biodiversity. Warming significantly increased aerobic chemoheterotrophy, ureolysis, and chemoheterotrophy, suggesting that warming increased the ability of bacteria to decompose organic matter and the emission of greenhouse gases, such as CO2 and CH4. Collectively, warming will alter soil bacterial community structure and its potential functions, further affecting key functions in grassland belowground ecosystems.
Collapse
Affiliation(s)
- Yang Yu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Lu Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Jing Wang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Yushu Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Chunwang Xiao
- College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
| |
Collapse
|
13
|
Borsodi AK, Mucsi M, Krett G, Szabó A, Felföldi T, Szili-Kovács T. Variation in Sodic Soil Bacterial Communities Associated with Different Alkali Vegetation Types. Microorganisms 2021; 9:microorganisms9081673. [PMID: 34442752 PMCID: PMC8402138 DOI: 10.3390/microorganisms9081673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 11/22/2022] Open
Abstract
In this study, we examined the effect of salinity and alkalinity on the metabolic potential and taxonomic composition of microbiota inhabiting the sodic soils in different plant communities. The soil samples were collected in the Pannonian steppe (Hungary, Central Europe) under extreme dry and wet weather conditions. The metabolic profiles of microorganisms were analyzed using the MicroResp method, the bacterial diversity was assessed by cultivation and next-generation amplicon sequencing based on the 16S rRNA gene. Catabolic profiles of microbial communities varied primarily according to the alkali vegetation types. Most members of the strain collection were identified as plant associated and halophilic/alkaliphilic species of Micrococcus, Nesterenkonia, Nocardiopsis, Streptomyces (Actinobacteria) and Bacillus, Paenibacillus (Firmicutes) genera. Based on the pyrosequencing data, the relative abundance of the phyla Proteobacteria, Actinobacteria, Acidobacteria, Gemmatimonadetes and Bacteroidetes also changed mainly with the sample types, indicating distinctions within the compositions of bacterial communities according to the sodic soil alkalinity-salinity gradient. The effect of weather extremes was the most pronounced in the relative abundance of the phyla Actinobacteria and Acidobacteria. The type of alkali vegetation caused greater shifts in both the diversity and activity of sodic soil microbial communities than the extreme aridity and moisture.
Collapse
Affiliation(s)
- Andrea K. Borsodi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| | - Márton Mucsi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
| | - Gergely Krett
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
| | - Attila Szabó
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tamás Felföldi
- Department of Microbiology, ELTE Eötvös Loránd University, Pázmány P. Sétány 1/C, H-1117 Budapest, Hungary; (M.M.); (G.K.); (T.F.)
- Institute of Aquatic Ecology, Centre for Ecological Research, Karolina út 29, H-1113 Budapest, Hungary;
| | - Tibor Szili-Kovács
- Institute for Soil Sciences, Centre for Agricultural Research, Herman Ottó út 15, H-1022 Budapest, Hungary
- Correspondence: (A.K.B.); (T.S.-K.); Tel.: +36-13812177 (A.K.B.); +36-309617452 (T.S.-K.)
| |
Collapse
|
14
|
Qiu L, Zhang Q, Zhu H, Reich PB, Banerjee S, van der Heijden MGA, Sadowsky MJ, Ishii S, Jia X, Shao M, Liu B, Jiao H, Li H, Wei X. Erosion reduces soil microbial diversity, network complexity and multifunctionality. THE ISME JOURNAL 2021; 15:2474-2489. [PMID: 33712698 PMCID: PMC8319411 DOI: 10.1038/s41396-021-00913-1] [Citation(s) in RCA: 187] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
While soil erosion drives land degradation, the impact of erosion on soil microbial communities and multiple soil functions remains unclear. This hinders our ability to assess the true impact of erosion on soil ecosystem services and our ability to restore eroded environments. Here we examined the effect of erosion on microbial communities at two sites with contrasting soil texture and climates. Eroded plots had lower microbial network complexity, fewer microbial taxa, and fewer associations among microbial taxa, relative to non-eroded plots. Soil erosion also shifted microbial community composition, with decreased relative abundances of dominant phyla such as Proteobacteria, Bacteroidetes, and Gemmatimonadetes. In contrast, erosion led to an increase in the relative abundances of some bacterial families involved in N cycling, such as Acetobacteraceae and Beijerinckiaceae. Changes in microbiota characteristics were strongly related with erosion-induced changes in soil multifunctionality. Together, these results demonstrate that soil erosion has a significant negative impact on soil microbial diversity and functionality.
Collapse
Affiliation(s)
- Liping Qiu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Qian Zhang
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.12955.3a0000 0001 2264 7233College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Hansong Zhu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Peter B. Reich
- grid.17635.360000000419368657Department of Forest Resources, University of Minnesota, St. Paul, MN USA ,grid.1029.a0000 0000 9939 5719Hawkesbury Institute for the Environment, Western Sydney University, Penrith South DC, NSW Australia
| | - Samiran Banerjee
- grid.261055.50000 0001 2293 4611Department of Microbiological Sciences, North Dakota State University, Fargo, ND USA
| | - Marcel G. A. van der Heijden
- grid.417771.30000 0004 4681 910XAgroscope, Department of Agroecology & Environment, Zürich, Switzerland ,grid.7400.30000 0004 1937 0650Department of Plant and Microbial Biology, University of Zürich, Zürich, Switzerland
| | - Michael J. Sadowsky
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Satoshi Ishii
- grid.17635.360000000419368657BioTechnology Institute, University of Minnesota, St. Paul, MN USA ,grid.17635.360000000419368657Department of Soil, Water, and Climate, University of Minnesota, St. Paul, MN USA
| | - Xiaoxu Jia
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Mingan Shao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.9227.e0000000119573309Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Baoyuan Liu
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China
| | - Huan Jiao
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Haiqiang Li
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,grid.144022.10000 0004 1760 4150College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi China
| | - Xiaorong Wei
- grid.144022.10000 0004 1760 4150State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi China ,CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, Shaanxi China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Chen RW, He YQ, Cui LQ, Li C, Shi SB, Long LJ, Tian XP. Diversity and Distribution of Uncultured and Cultured Gaiellales and Rubrobacterales in South China Sea Sediments. Front Microbiol 2021; 12:657072. [PMID: 34220745 PMCID: PMC8248818 DOI: 10.3389/fmicb.2021.657072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/23/2021] [Indexed: 02/01/2023] Open
Abstract
Actinobacteria are ubiquitous in marine ecosystems, and they are regarded as an important, underexplored, potential pharmaceutical resource. The orders Gaiellales and Rubrobacterales are deep taxonomic lineages of the phylum Actinobacteria, both are represented by a single genus and contain only a few species. Although they have been detected frequently by high-throughput sequencing, their functions and characteristics in marine habitats remain unknown due to the lack of indigenous phenotypes. Here, we investigated the status of the orders in South China Sea (SCS) sediments using culture-independent and culture-dependent methods. Gaiellales is the second-most abundant order of Actinobacteria and was widely distributed in SCS sediments at water depths of 42-4,280 m, and four novel marine representatives in this group were successfully cultured. Rubrobacterales was present at low abundance in energy-limited marine habitats. An isolation strategy for Rubrobacterales from marine samples was proposed, and a total of 138 mesophilic Rubrobacterales strains were isolated under conditions of light and culture time combined with high-salinity or low-nutrient media. Marine representatives recovered in this study formed branches with a complex evolutionary history in the phylogenetic tree. Overall, the data indicate that both Gaiellales and Rubrobacterales can adapt to and survive in extreme deep-sea environments. This study lays the groundwork for further analysis of the distribution and diversity of the orders Gaiellales and Rubrobacterales in the ocean and provides a specific culture strategy for each group. The results open a window for further research on the ecological roles of the two orders in marine ecosystems.
Collapse
Affiliation(s)
- Rou-Wen Chen
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan-Qiu He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin-Qing Cui
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Cun Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Song-Biao Shi
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li-Juan Long
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| | - Xin-Peng Tian
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, China
| |
Collapse
|
16
|
Xu H, Zhao P, Ran Q, Li W, Wang P, Luo Y, Huang C, Yang X, Yin J, Zhang R. Enhanced electrokinetic remediation for Cd-contaminated clay soil by addition of nitric acid, acetic acid, and EDTA: Effects on soil micro-ecology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145029. [PMID: 33770863 DOI: 10.1016/j.scitotenv.2021.145029] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 12/15/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
Enhanced electrokinetic remediation (EKR) allows the rapid remediation of heavy metal-contaminated clay, but the impacts of this process on soil micro-ecology have rarely been evaluated. In this study, nitric acid, acetic acid, and EDTA were applied for enhancement of EKR and the effects on Cd removal, soil enzyme activity, and soil bacterial communities (SBCs) were determined. Nitric acid and acetic acid allowed 93.2% and 91.8% Cd removal, respectively, and EDTA treatment resulted in 40.4% removal due to the formation of negatively charged EDTA-Cd complexes, resulting in opposing directions of Cd electromigration and electroosmosis flow and slow electromigration rate caused by low voltage drop. Activities of soil beta-glucosidase, acid phosphatase, and urease, were all reduced by enhanced EKR treatment, especially nitric acid treatment, by 46.2%, 58.8% and 57.7%, respectively. The SBCs were analyzed by high-throughput sequencing and revealed significantly increased diversity for acetic acid treatment, no effect for EDTA treatment, and reduced diversity for nitric acid treatment. Compared with nitric acid and EDTA, acetic acid treatment enhanced EKR for higher Cd removal and improved biodiversity.
Collapse
Affiliation(s)
- Haiyin Xu
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Peiling Zhao
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiyang Ran
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Hengkai Environmental Protection Science & Technology Investment Co. Ltd, Changsha 410205, China
| | - Wenjuan Li
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ping Wang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Yuanling Luo
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Changsha Environmental Protection College, Changsha 410004, China.
| | - Chao Huang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiong Yang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jingxuan Yin
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Ruiqi Zhang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
17
|
Zhang C, Liu Q, Li X, Wang M, Liu X, Yang J, Xu J, Jiang Y. Spatial patterns and co-occurrence networks of microbial communities related to environmental heterogeneity in deep-sea surface sediments around Yap Trench, Western Pacific Ocean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143799. [PMID: 33333332 DOI: 10.1016/j.scitotenv.2020.143799] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/12/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
Microbial communities are a large component of abyssal and hadal benthic environments, especially in deep-sea areas like Yap Trench, they provide a continuous source of nutrients and energy in their unique ecosystems. However, due to sampling difficulties, these microbial communities are relatively understudied. In the summer of 2017, sediment samples were collected from 21 stations around Yap Trench in the Western Pacific Ocean (mostly in the West Caroline Basin), at depths ranging from 3156 to 7837 m. Sediment samples from deep water depths and shallow water depths differed in organic matter content, median grain size, silt-clay content, and biodiversity. The structure of the microbial communities in the surface sediments had distinct relationships with environmental factors and their co-occurrence networks exhibited a clear spatial pattern. In addition, for both prokaryotes or eukaryotes, a combination of variables including silt-clay content, organic matter content, median grain size, and depth had the greatest impact on community structure. It was notable that fungi played important roles in the co-occurrence networks of deep water depth sediment samples while bacteria dominated those of shallow water depth samples. The differences in structure and ecological niches in the different networks were due to differences in sediment texture and organic matter content. Since clay had a positive effect on the diversity of bacteria, it had an indirect positive effect on fungi, leading to differences in biodiversity among different groups. More organic matter meant more nutrients were available for the growth and reproduction of microbes, which led to fewer niche overlaps. This study conducted an extensive and systematic sequencing survey of surface sediments around Yap Trench in the Western Pacific Ocean, providing insight into microbial responses to environmental heterogeneity in deep-sea benthic ecosystems.
Collapse
Affiliation(s)
- Chenru Zhang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Qian Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xianrong Li
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China
| | - Xiaoshou Liu
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jinpeng Yang
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Jishang Xu
- Key Lab of Submarine Geosciences and Prospecting Techniques, Ministry of Education, Qingdao, China; College of Marine Geosciences, Ocean University of China, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences & Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
| |
Collapse
|
18
|
Response of oat morphologies, root exudates, and rhizosphere fungal communities to amendments in a saline-alkaline environment. PLoS One 2020; 15:e0243301. [PMID: 33270753 PMCID: PMC7714365 DOI: 10.1371/journal.pone.0243301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/18/2020] [Indexed: 11/19/2022] Open
Abstract
The application of organic amendments to saline-alkaline soil has been recommended as an agricultural strategy to improve crop productivity and soil health. However, there has been limited research on how organic soil amendment strategies affect the health of oats and their associated rhizosphere fungal communities in saline-alkaline conditions. Thus, the objectives of this study were to understand the effects of oat cultivars with contrasting saline-alkaline tolerances and different amendments on plant morphologies, root exudates (soluble sugars and organic acids), and rhizosphere fungal communities in a saline-alkaline environment. Experiments were conducted on a saline-alkaline tolerant cultivar, Baiyan2, and a saline-alkaline sensitive cultivar, Caoyou1, under four different organic amendment strategies: 1. control (no amendment application), 2. bio-fertilizer application, 3. rotten straw application, and 4. a co-application of bio-fertilizer and rotten straw. Results showed that plant morphological characters of Baiyan2 were better than Caoyou1, and that soluble sugar and organic acid levels in the rhizosphere of Baiyan2 were significantly lower than Caoyou1. Compared to the control, oat root and plant development was significantly improved by the combined bio-fertilizer and rotten straw amendment. Bio-fertilizer application promoted malic and citric acid levels, contributing to a higher total organic acid level, and significantly increased the abundance of Rhizopus arrhizus and decreased the abundance of the fungal pathogens Alternaria, Cladosporium, Sarocladium and Heydenia of Ascomycota in both oat cultivars. All amendment treatments containing rotten straw, except the combined amendment in Baiyan2, significantly increased the relative abundance of Ascomycota (specifically Gibberella, Talaromyces, Fusarium, and Bipolaris) and decreased the relative abundance of R. arrhizus by reducing soluble sugar and organic acid levels. For the combined amendment in Baiyan2, there were no significant changes in Gibberella and Rhizopus between the control and amendment treatment. Our results suggest that co-application of bio-fertilizer and rotten straw, combined with a tolerant oat cultivar, is an effective method to increase crop productivity and enhance soil health in a saline-alkaline environment.
Collapse
|
19
|
Bio-fertilizer and rotten straw amendments alter the rhizosphere bacterial community and increase oat productivity in a saline-alkaline environment. Sci Rep 2020; 10:19896. [PMID: 33199781 PMCID: PMC7669890 DOI: 10.1038/s41598-020-76978-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 11/04/2020] [Indexed: 01/22/2023] Open
Abstract
Saline–alkaline conditions can limit crop productivity and the role of soil microbes in nutrient cycling in arid and semi-arid regions throughout the world. A better understanding of how soil amendments and plant varieties affect rhizosphere microbial communities in saline–alkaline environments is important for the development of sustainable and productive agricultural systems under these challenging conditions. The objective of this study was to determine the effect of organic soil amendments on crop yield, soil physicochemical properties and rhizosphere bacterial communities of two oat cultivars in a saline–alkaline soil. The experiment was conducted in a semi-arid region of Northern China and involved growing two oat cultivars with varying levels of saline–alkaline tolerance under four different amendment treatments: (1) control (no amendments), (2) bio-fertilizer, (3) rotten straw, and (4) combination of bio-fertilizer and rotten straw. The combined bio-fertilizer and rotten straw amendment treatment resulted in the highest oat yields, reduced soil pH, and increased soil salt content for both cultivars. Baiyan2 (tolerant cultivar) had a higher bacterial α-diversity, relative abundance of Proteobacteria and Acidobacteria, and lower relative abundance of Firmicutes compared to Caoyou1 (sensitive cultivar). The rotten straw treatment and combined amendment treatment decreased bacterial α-diversity and the abundance of Proteobacteria, and increased the abundance of Firmicutes, which were positively correlated with soil salt, available nitrogen, phosphorous and potassium for both cultivars. Our study suggested using tolerant oat cultivars with the combined application of rotten straw and bio-fertilizer could be an effective strategy in remediating saline–alkaline soils.
Collapse
|
20
|
Deng J, Zhou Y, Zhu W, Yin Y. Effects of afforestation with Pinus sylvestris var. mongolica plantations combined with enclosure management on soil microbial community. PeerJ 2020; 8:e8857. [PMID: 32257650 PMCID: PMC7102505 DOI: 10.7717/peerj.8857] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/05/2020] [Indexed: 11/20/2022] Open
Abstract
Grazing and litter removal can alter understory structure and composition after afforestation, posing a serious threat to sustainable forest development. Enclosure is considered to be an effective measure to restore degraded forest restoration. However, little is known about the dynamics of soil nutrients and microbial communities during the forest restoration process. In the present study, the effects of Arachis hypogaea (AH), Pinus sylvestris var. mongolica (PSM) and Pinus sylvestris var. mongolica with enclosure (PSME) on soil chemical properties and soil microbial communities were studied in Zhanggutai, Liaoning Province, China. The results showed that PSME could remarkably contribute to improve soil total C, total N and total P compared to PSM and AH. Additionally, PSM could clearly increase the soil bacterial community diversity and fungal Chao1 index and ACE index. Additionally, PSME could further increase soil Chao1 index and ACE index of soil bacteria. Soil total C, total N and available N were the main factors related to soil microbial diversity. Actinobacteria and Ascomycota were the predominant bacterial and fungal phyla, respectively. Specifically, PSME could increase the relative abundances of Actinobacteria, Gemmatimonadetes, Ascomycota and Mortierellomycota and decreased the relative abundances of Acidobacteria, Chloroflexi and Basidiomycota than PSM. PSM and PSME could clearly change soil microbial communities compared with AH and PSME could remarkably shift soil fungal communities than PSM. What's more, the soil microbial community structure were affected by multiple edaphic chemical parameters. It can be seen that afforestation combined with enclosed management potentially regulate microbial properties through shifting the soil properties. This study can provide new ideas for further understanding the impact of enclosure on PSM and provide theoretical support for the management of PSM.
Collapse
Affiliation(s)
- Jiaojiao Deng
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| | - Yongbin Zhou
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| | - Wenxu Zhu
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| | - You Yin
- College of Forestry, Shenyang Agricultural University, Shenyang, Liaoning, China.,Research Station of Liaohe-River Plain Forest Ecosystem, Chinese Forest Ecosystem Research Network (CFERN), Shenyang Agricultural University, Tieling, Liaoning, China
| |
Collapse
|
21
|
Bacterial Community Changes Associated with Land Use Type in the Forest Montane Region of Northeast China. FORESTS 2019. [DOI: 10.3390/f11010040] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Soil microorganisms play a vital role in the biogeochemical cycle, whereas land use change is one of the primary factors that affects the biodiversity and functionality of terrestrial ecosystems. The composition and diversity of bacterial communities (by high-throughput sequencing of the bacterial 16S rRNA gene) were evaluated in the soils of the Montane Region of Northeast China, across different land use types, e.g., natural secondary forest (Quercus mongolica, QM), shrubland (SL), coniferous plantation (Larix gmelinii, LG, and Pinus koraiensis, PK), and agricultural land (Zea mays, ZM). Significant differences in the chemical characteristics and bacterial communities in soils under different land uses were observed in this study. Soil resident TC (total carbon) and TN (total nitrogen) were much higher in secondary natural forest soils, than in coniferous plantation and agricultural soils. Compared with forest and shrubland soils, soil bacterial OTUs, the Chao1 index, and the ACE index were the lowest in the ZM. There were high proportions of Proteobacteria, Actinobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Verrucomicrobia, Bacteroidetes, Planctomycetes, Saccharibacteria, and Nitrospirae in agricultural and forest soils, which accounted for over 90% of the reads in each sample. We found that the dominant group in the forest and shrubland soils was Proteobacteria, while the most dominant group in the ZM was Actinobacteria. The results of both heatmap and principal component analyses displayed groups according to land use types, which indicated that the bacterial communities in the areas under study were significantly influenced by long term differently managed land use. Furthermore, redundancy and Pearson correlation analyses revealed that the bacterial communities were primarily regulated by soil characteristics. This suggested that altered land use patterns initiated changes in the chemical properties of the soils, which affected the composition of microbial communities in this area. This provides a scientific basis for the evolutionary mechanism of soil quality, as well as the rational development and utilization of land resources.
Collapse
|
22
|
Zhang Z, Zhang P, Lin Q, Cha Z, Luo W. Response of bacterial communities in rubber plantations to different fertilizer treatments. 3 Biotech 2019; 9:293. [PMID: 31297306 PMCID: PMC6609652 DOI: 10.1007/s13205-019-1821-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 06/19/2019] [Indexed: 11/28/2022] Open
Abstract
In the present study, the effects of chemical fertilizer (CF) and organic fertilizer plus chemical fertilizer application (OF-CF) on natural rubber yield, soil properties, and soil bacterial community were systematically investigated in rubber plantations. The rubber dry yield was 26.3% more in the OF treatment group than in the CF treatment group. The contents of total nitrogen (TN), available nitrogen (AN), available phosphorus (AP), and available potassium (AK) as well as soil organic matter (SOM) and pH value were higher following OF-CF treatment. Using Illumina sequencing, a total of 927 operational taxonomic units (OTUs) were obtained following CF treatment, while 955 OTUs were obtained after OF-CF treatment. Relative abundance analysis showed the relative abundances of four phyla (Acidobacteria, Proteobacteria, Actinobacteria, Gemmatimonadetes) were different between the two treatment groups. Correlation analysis revealed Acidobacteria, Bacteroidetes, Thaumarchaeota, Elusimicrobia, Verrucomicrobia were the key taxa that determined the soil properties. Additionally, five OTUs (OTU_506, OTU_391, OTU_189, OTU_278, OTU_1057) were thought to be related to the biodegradation of natural rubber. Taken together, these results improve our understanding of the OF-mediated improvement in soil fertility and contribute to the identification of rubber-degrading bacteria in rubber plantations.
Collapse
Affiliation(s)
- Zhiyang Zhang
- Institute of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan China
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Peisong Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Qinghuo Lin
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Zhengzao Cha
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Wei Luo
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| |
Collapse
|
23
|
Response of soil bacterial community structure to different reclamation years of abandoned salinized farmland in arid China. Arch Microbiol 2019; 201:1219-1232. [PMID: 31190086 DOI: 10.1007/s00203-019-01689-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/23/2019] [Accepted: 06/02/2019] [Indexed: 10/26/2022]
Abstract
In recent years, understanding the impact of reclamation of abandoned salinized field on microbial community structure is of great importance for ecosystem restoration in arid regions. The aim of this work was to investigate the effects of reclamation years on soil properties, bacterial community composition and diversity based on field sampling and llumina MiSeq sequencing. The five reclamation years are: unreclaimed salinized and reclaimed (1, 5, 10, and 15 years) fields. The results showed soil properties are significantly altered by abandoned salinized field. In particular, reclamation significantly decreased soil electrical conductivity, Cl-, SO42-, Na+, and Ca2+, during 5 years of reclamation. In addition, reclamation increased the richness and diversity of the bacterial community, except for the 1-year field soils. There was a large difference in the abundant bacterial phyla in 1-year field soils compared with other field soils. Proteobacteria were the most abundant in all of the field soils. Principal coordinates analysis showed that the abandoned and 1-year field soils exhibited specific differences in bacterial community structures compared with other field soils. Statistical analyses showed that available phosphorus, SO42-, Mg2+, and Ca2+ were the main physicochemical properties affecting the soil bacterial communities. Overall, reclamation improved soil physicochemical properties and altered the structure and composition of soil bacterial communities compared with unreclaimed salinized soil.
Collapse
|
24
|
The Effects of Saline Stress on the Growth of Two Shrub Species in the Qaidam Basin of Northwestern China. SUSTAINABILITY 2019. [DOI: 10.3390/su11030828] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Soil salinization is a serious issue in the Qaidam Basin and significantly limits economic development. To explore the salt tolerance of two shrubs in this area, we determined several parameters, including the Soil and Plant Analyzer Development (SPAD), net photosynthetic rate (Pn), transpiration rate (Tr), intercellular carbon dioxide (Ci, μmol mol−1), stomatal conductance (Gs, umol m−2s−1), and water use efficiency (WUE) under different salt concentrations (0, 100, 200, 300, and 400 mmol·L−1). In addition, the shrubs of Elaeagnus angustifolia and Lycium barbarum of salt tolerance were evaluated. The photosynthetic parameters of E. angustifolia were more sensitive to salinity than those of L. barbarum, and SPAD, Pn, Tr, and WUE of E. angustifolia decreased significantly with increasing salt concentrations (P < 0.05), while in L. barbarum, SPAD, Pn, and Tr decreased significantly with increasing salt concentrations (P < 0.05), but the WUE of L. barbarum showed no significantly variation under the salt concentration gradient. The results of correlation matrix of photosynthetic index also indicated that the minimum salt tolerance of E. angustifolia and L. barbarum were 108.4 and 246.3 mmol·L−1, respectively. Our results provide a scientific basis for the selection of salt-tolerant plant species in of northwest China.
Collapse
|
25
|
Dynamic Change in Enzyme Activity and Bacterial Community with long-term rice Cultivation in Mudflats. Curr Microbiol 2019; 76:361-369. [DOI: 10.1007/s00284-019-01636-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 01/17/2019] [Indexed: 11/27/2022]
|
26
|
Cheng Z, Chen Y, Zhang F. Effect of reclamation of abandoned salinized farmland on soil bacterial communities in arid northwest China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:799-808. [PMID: 29494981 DOI: 10.1016/j.scitotenv.2018.02.259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 06/08/2023]
Abstract
Understanding the impact of reclamation of abandoned salinized farmland on soil bacterial community is of great importance for maintaining soil health and sustainability in arid regions. In this study, we used field sampling and 454 pyrosequencing methods to investigate the effects of 5-year reclamation treatments on soil properties, bacterial community composition and diversity. The four reclamation treatments are: abandoned salinized farmland (CK), cropland (CL), grassland (GL) and woodland (WL). We have found soil properties are significantly altered by abandoned salinized farmland reclamation. In particular, the lowest soil pH and electrical conductivity (EC) values are observed in CL (P<0.05). The dominant phyla are Firmicutes, Proteobacteria, Chloroflexi, Actinobacteria and Acidobacteria in all treatments. At the genus levels, the relative abundance of Bacillus, Lactococcus, Streptococcus and Enterococcus in CK, GL and WL is significantly higher than in CL. Bacterial diversity indices (i.e. ACE, Chao and Shannon) dramatically increase after the reclamation, with the highest in CL. Similar patterns of bacterial communities have been observed in CK, GL and WL soils, but significantly different from CL. Regression analyses indicate that the relative abundance of these phyla are significantly correlated with soil Fe, pH and EC. Results from non-metric multidimensional scaling (NMDS) and redundancy analysis (RDA) indicate that soil Fe content, EC and pH are the most important factors in shaping soil bacterial communities. Overall, results indicate that abandoned salinized farmland reclaimed for CL significantly decrease soil pH and EC, and increase soil bacterial community diversity. Soil Fe concentration, EC and pH are the dominant environmental factors affecting soil bacterial community composition. The important role of Fe concentration in shaping bacterial community composition is a new discovery among the similar studies.
Collapse
Affiliation(s)
- Zhibo Cheng
- Agricultural College, Shihezi University, Shihezi City, 832003, China; CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Yun Chen
- CSIRO Land and Water, Canberra, ACT, 2601, Australia
| | - Fenghua Zhang
- Agricultural College, Shihezi University, Shihezi City, 832003, China.
| |
Collapse
|
27
|
Vera-Gargallo B, Ventosa A. Metagenomic Insights into the Phylogenetic and Metabolic Diversity of the Prokaryotic Community Dwelling in Hypersaline Soils from the Odiel Saltmarshes (SW Spain). Genes (Basel) 2018. [PMID: 29518047 PMCID: PMC5867873 DOI: 10.3390/genes9030152] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypersaline environments encompass aquatic and terrestrial habitats. While only a limited number of studies on the microbial diversity of saline soils have been carried out, hypersaline lakes and marine salterns have been thoroughly investigated, resulting in an aquatic-biased knowledge about life in hypersaline environments. To improve our understanding of the assemblage of microbes thriving in saline soils, we assessed the phylogenetic diversity and metabolic potential of the prokaryotic community of two hypersaline soils (with electrical conductivities of ~24 and 55 dS/m) from the Odiel saltmarshes (Spain) by metagenomics. Comparative analysis of these soil databases with available datasets from salterns ponds allowed further identification of unique and shared traits of microbial communities dwelling in these habitats. Saline soils harbored a more diverse prokaryotic community and, in contrast to their aquatic counterparts, contained sequences related to both known halophiles and groups without known halophilic or halotolerant representatives, which reflects the physical heterogeneity of the soil matrix. Our results suggest that Haloquadratum and certain Balneolaeota members may preferentially thrive in aquatic or terrestrial habitats, respectively, while haloarchaea, nanohaloarchaea and Salinibacter may be similarly adapted to both environments. We reconstructed 4 draft genomes related to Bacteroidetes, Balneolaeota and Halobacteria and appraised their metabolism, osmoadaptation strategies and ecology. This study greatly improves the current understanding of saline soils microbiota.
Collapse
Affiliation(s)
- Blanca Vera-Gargallo
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain.
| |
Collapse
|