1
|
Wang W, Wang H, Zou X, Liu Y, Zheng K, Chen X, Wang X, Sun S, Yang Y, Wang M, Shao H, Liang Y. A novel virus potentially evolved from the N4-like viruses represents a unique viral family: Poorviridae. Appl Environ Microbiol 2024; 90:e0155924. [PMID: 39570022 DOI: 10.1128/aem.01559-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 09/27/2024] [Indexed: 11/22/2024] Open
Abstract
Pseudoalteromonas are widely distributed in marine extreme habitats and exhibit diverse extracellular protease activity, which is essential for marine biogeochemical cycles. However, our understanding of viruses that infect Pseudoalteromonas remains limited. This study isolated a virus infecting Pseudoalteromonas nigrifaciens from Xiaogang in Qingdao, China. vB_PunP_Y3 comprises a linear, double-strand DNA genome with a length of 48,854 bp, encoding 52 putative open reading frames. Transmission electron microscopy demonstrates the short-tailed morphology of vB_PunP_Y3. Phylogenetic and genome-content-based analysis indicate that vB_PunP_Y3 represents a novel virus family named as Poorviridae, along with three high-quality uncultivated viral genomes. Biogeographical analyses show that Poorviridae is distributed across five viral ecological zones, and is predominantly detected in the Antarctic, Arctic, and bathypelagic zones. Comparative genomics analyses identified three of the seven hallmark proteins of N4-like viruses (DNA polymerase, major capsid protein, and virion-encapsulated RNA polymerase) from vB_PunP_Y3, combing with the protein tertiary structures of the major capsid protein, suggesting that vB_PunP_Y3 might evolve from the N4-like viruses. IMPORTANCE vB_PunP_Y3 is a unique strain containing three of the seven hallmark proteins of N4-like viruses, but is grouped into a novel family-level viral cluster with three uncultured viruses from metagenomics, named Poorviridae. This study enhanced the understanding about the genetic diversity, evolution, and distribution of Pseudoalteromonas viruses and provided insights into the novel evolution mechanism of marine viruses.
Collapse
Affiliation(s)
- Wei Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hongmin Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xiao Zou
- Xiangdong Hospital, Hunan Normal University, Liling, China
| | - Yundan Liu
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xin Chen
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinyi Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Shujuan Sun
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yang Yang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Min Wang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Haide College, Ocean University of China, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, MoE Key Laboratory of Evolution & Marine Biodiversity, Institute of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| |
Collapse
|
2
|
Zhang G, Liu Y, Wang J, Li N, Han P, Chen Y, Xu W, Liu C. Characterization and genomic analysis of a novel bacteriophage BUCT_49532 lysing Klebsiella pneumoniae. Virus Genes 2023; 59:852-867. [PMID: 37857999 DOI: 10.1007/s11262-023-02033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/25/2023] [Indexed: 10/21/2023]
Abstract
Bacteriophages are a type of virus widely distributed in nature that demonstrates a remarkable aptitude for selectively recognizing and infecting bacteria. In particular, Klebsiella pneumoniae is acknowledged as a clinical pathogen responsible for nosocomial infections and frequently develops multidrug resistance. Considering the increasing prevalence of antibiotic-resistant bacteria, bacteriophages have emerged as a compelling alternative therapeutic approach. In this study, a novel phage named BUCT_49532 was isolated from sewage using K. pneumoniae K1119 as the host. Electron microscopy revealed that BUCT_49532 belongs to the Caudoviricetes class. Further analysis through whole genome sequencing demonstrated that BUCT_49532 is a Jedunavirus comprised of linear double-stranded DNA with a length of 49,532 bp. Comparative genomics analysis based on average nucleotide identity (ANI) values revealed that BUCT_49532 should be identified as a novel species. Characterized by a good safety profile, high environmental stability, and strong lytic performance, phage BUCT_49532 presents an interesting case for consideration. Although its host range is relatively narrow, its application potential can be expanded by utilizing phage cocktails, making it a promising candidate for biocontrol approaches.
Collapse
Affiliation(s)
- Guangye Zhang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yucong Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Jinhong Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nan Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Pengjun Han
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yiming Chen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Weijian Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changxia Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
3
|
Jia K, Peng Y, Chen X, Jian H, Jin M, Yi Z, Su M, Dong X, Yi M. A Novel Inovirus Reprograms Metabolism and Motility of Marine Alteromonas. Microbiol Spectr 2022; 10:e0338822. [PMID: 36301121 PMCID: PMC9769780 DOI: 10.1128/spectrum.03388-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 01/10/2023] Open
Abstract
Members from the Inoviridae family with striking features are widespread, highly diverse, and ecologically pervasive across multiple hosts and environments. However, a small number of inoviruses have been isolated and studied. Here, a filamentous phage infecting Alteromonas abrolhosensis, designated ϕAFP1, was isolated from the South China Sea and represented a novel genus of Inoviridae. ϕAFP1 consisted of a single-stranded DNA genome (5986 bp), encoding eight putative ORFs. Comparative analyses revealed ϕAFP1 could be regarded as genetic mosaics having homologous sequences with Ralstonia and Stenotrophomonas phages. The temporal transcriptome analysis of A. abrolhosensis to ϕAFP1 infection revealed that 7.78% of the host genes were differentially expressed. The genes involved in translation processes, ribosome pathways, and degradation of multiple amino acid pathways at the plateau period were upregulated, while host material catabolic and bacterial motility-related genes were downregulated, indicating that ϕAFP1 might hijack the energy of the host for the synthesis of phage proteins. ϕAFP1 exerted step-by-step control on host genes through the appropriate level of utilizing host resources. Our study provided novel information for a better understanding of filamentous phage characteristics and phage-host interactions. IMPORTANCE Alteromonas is widely distributed and plays a vital role in biogeochemical in marine environments. However, little information about Alteromonas phages is available. Here, we isolated and characterized the biological characteristics and genome sequence of a novel inovirus infecting Alteromonas abrolhosensis, designated ϕAFP1, representing a novel viral genus of Inoviridae. We then presented a comprehensive view of the ϕAFP1 phage-Alteromonas abrolhosensis interactions, elucidating reprogramed host metabolism and motility. Our study provided novel information for better comprehension of filamentous phage characteristics and phage-host interactions.
Collapse
Affiliation(s)
- Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Yongyi Peng
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xueji Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Huahua Jian
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Development Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Min Jin
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Zhiwei Yi
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
| | - Ming Su
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Xiyang Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Liu B, Zheng T, Quan R, Jiang X, Tong G, Wei X, Lin M. Biological characteristics and genomic analysis of a novel Vibrio parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen China. Front Cell Infect Microbiol 2022; 12:1035364. [PMID: 36339346 PMCID: PMC9633966 DOI: 10.3389/fcimb.2022.1035364] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/10/2022] [Indexed: 11/29/2022] Open
Abstract
Vibrio parahaemolyticus is a common pathogen usually controlled by antibiotics in mariculture. Notably, traditional antibiotic therapy is becoming less effective because of the emergence of bacterial resistance, hence new strategies need to be found to overcome this challenge. Bacteriophages, a class of viruses that lyse bacteria, can help us control drug-resistant bacteria. In this study, a novel Vibrio parahaemolyticus phage phiTY18 isolated from the coastal water of Xiamen was explored. Transmission electron microscopy showed that phiTY18 had an icosahedral head of 130.0 ± 1.2 nm diameter and a contractile tail of length of 66.7 ± 0.6 nm. The phage titer could reach 7.2×1010 PFU/mL at the optimal MOI (0.01). The phage phiTY18 had a degree of tolerance to heat and acid and base. At the temperature of 50°C (pH7.0, 1h) the survival phages reached 1.28×106 PFU/mL, and at pH 5-9 (30°C, 1h), the survival phages was greater than 6.37×107 PFU/mL Analysis of the phage one-step growth curve revealed that it had a latent period of 10min, a rise period of 10min, and an average burst size of the phage was 48 PFU/cell. Genome sequencing and analysis drew that phage phiTY18 had double-stranded DNA (191,500 bp) with 34.90% G+C content and contained 117 open reading frames (ORFs) and 24 tRNAs. Phylogenetic tree based on major capsid protein (MCP) revealed that phage phiTY18 (MW451250) was highly related to two Vibrio phages phiKT1024 (OM249648) and Va1 (MK387337). The NCBI alignment results showed that the nucleotide sequence identity was 97% and 93%, respectively. In addition, proteomic tree analysis indicated that phage phiTY18, phiKT1024, and Va1 were belong to the same virus sub-cluster within Myoviridae. This study provides a theoretical basis for understanding the genomic characteristics and the interaction between Vibrio parahaemolyticus phages and their host.
Collapse
Affiliation(s)
- Bo Liu
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Tingyi Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Rui Quan
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Xinglong Jiang
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
| | - Guixiang Tong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Xinxian Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen, Fujian, China
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Xiamen, Fujian, China
- *Correspondence: Mao Lin,
| |
Collapse
|
5
|
Abstract
Alteromonas is an opportunistic marine bacterium that persists in the global ocean and has important ecological significance. However, current knowledge about the diversity and ecology of alterophages (phages that infect Alteromonas) is lacking. Here, three similar phages infecting Alteromonas macleodii ATCC 27126T were isolated and physiologically characterized. Transmission electron microscopy revealed Siphoviridae morphology, with an oblate icosahedral head and a long noncontractile tail. Notably, these members displayed a small burst size (15–19 plaque-forming units/cell) yet an extensively broad host spectrum when tested on 175 Alteromonas strains. Such unique infection kinetics are potentially associated with discrepancies in codon usage bias from the host tRNA inventory. Phylogenetic analysis indicated that the three phages are closely evolutionarily related; they clustered at the species level and represent a novel genus. Three auxiliary metabolic genes with roles in nucleotide metabolism and putative biofilm dispersal were found in these phage genomes, which revealed important biogeochemical significance of these alterophages in marine ecosystems. Our isolation and characterization of these novel phages expand the current understanding of alterophage diversity, evolution, and phage–host interactions. IMPORTANCE The marine bacterium Alteromonas is prevalent in the global ocean with crucial ecological significance; however, little is known about the diversity and evolution of its bacteriophages that profoundly affect the bacterial communities. Our study characterized a novel genus of three newly isolated Alteromonas phages that exhibited a distinct infection strategy of broad host spectrum and small burst size. This strategy is likely a consequence of the viral trade-off between virulence and lysis profiles during phage–host coevolution, and our work provides new insight into viral evolution and infection strategies.
Collapse
|
6
|
Genome and Ecology of a Novel Alteromonas Podovirus, ZP6, Representing a New Viral Genus, Mareflavirus. Microbiol Spectr 2021; 9:e0046321. [PMID: 34643440 PMCID: PMC8515928 DOI: 10.1128/spectrum.00463-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCEAlteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
Collapse
|
7
|
Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, Zhang X, Jie Y, Shao H, Jiang Y, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, McMinn A, Wang M. Characterization and Genomic Analysis of Marinobacter Phage vB_MalS-PS3, Representing a New Lambda-Like Temperate Siphoviral Genus Infecting Algae-Associated Bacteria. Front Microbiol 2021; 12:726074. [PMID: 34512604 PMCID: PMC8424206 DOI: 10.3389/fmicb.2021.726074] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/03/2021] [Indexed: 01/12/2023] Open
Abstract
Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from −20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Baohong Liu
- Department of Hospital Infection Management, Qilu Hospital, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Siyuan You
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Wenjing Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yaqi Jie
- College of Letters and Science, University of Wisconsin-Madison, Madison, WI, United States
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yong Jiang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Terengganu, Malaysia
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China.,UMT-OUC Joint Centre for Marine Studies, Qingdao, China.,The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
8
|
Isolation and Characterization of Bacteriophage ZCSE6 against Salmonella spp.: Phage Application in Milk. Biologics 2021. [DOI: 10.3390/biologics1020010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Food safety is very important in the food industry as most pathogenic bacteria can cause food-borne diseases and negatively affect public health. In the milk industry, contamination with Salmonella has always been a challenge, but the risks have dramatically increased as almost all bacteria now show resistance to a wide range of commercial antibiotics. This study aimed to isolate a bacteriophage to be used as a bactericidal agent against Salmonella in milk and dairy products. Here, phage ZCSE6 has been isolated from raw milk sample sand molecularly and chemically characterized. At different multiplicities of infection (MOIs) of 0.1, 0.01, and 0.001, the phage–Salmonella interaction was studied for 6 h at 37 °C and 24 h at 8 °C. In addition, ZCSE6 was tested against Salmonella contamination in milk to examine its lytic activity for 3 h at 37 °C. The results showed that ZCSE6 has a small genome size (<48.5 kbp) and belongs to the Siphovirus family. Phage ZCSE6 revealed a high thermal and pH stability at various conditions that mimic milk manufacturing and supply chain conditions. It also demonstrated a significant reduction in Salmonella concentration in media at various MOIs, with higher bacterial eradication at higher MOI. Moreover, it significantly reduced Salmonella growth (MOI 1) in milk, manifesting a 1000-fold decrease in bacteria concentration following 3 h incubation at 37 °C. The results highlighted the strong ability of ZCSE6 to kill Salmonella and control its growth in milk. Thus, ZCSE6 is recommended as a biocontrol agent in milk to limit bacterial growth and increase the milk shelf-life.
Collapse
|
9
|
Ma R, Lai J, Chen X, Wang L, Yang Y, Wei S, Jiao N, Zhang R. A Novel Phage Infecting Alteromonas Represents a Distinct Group of Siphophages Infecting Diverse Aquatic Copiotrophs. mSphere 2021; 6:e0045421. [PMID: 34106770 PMCID: PMC8265664 DOI: 10.1128/msphere.00454-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022] Open
Abstract
Bacteriophages play critical roles in impacting microbial community succession both ecologically and evolutionarily. Although the majority of phage genetic diversity has been increasingly unveiled, phages infecting members of the ecologically important genus Alteromonas remain poorly understood. Here, we present a comprehensive analysis of a newly isolated alterophage, vB_AcoS-R7M (R7M), to characterize its life cycle traits, genomic features, and putative evolutionary origin. R7M harbors abundant genes identified as host-like auxiliary metabolic genes facilitating viral propagation. Genomic analysis suggested that R7M is distinct from currently known alterophages. Interestingly, R7M was found to share a set of similar characteristics with a number of siphophages infecting diverse aquatic opportunistic copiotrophs. We therefore proposed the creation of one new subfamily (Queuovirinae) to group with these evolutionarily related phages. Notably, tail genes were less likely to be shared among them, and baseplate-related genes varied the most. In-depth analyses indicated that R7M has replaced its distal tail with a Rhodobacter capsulatus gene transfer agent (RcGTA)-like baseplate and further acquired a putative receptor interaction site targeting Alteromonas. These findings suggest that horizontal exchanges of viral tail adsorption apparatuses are widespread and vital for phages to hunt new hosts and to adapt to new niches. IMPORTANCE The evolution and ecology of phages infecting members of Alteromonas, a marine opportunistic genus that is widely distributed and of great ecological significance, remain poorly understood. The present study integrates physiological and genomic evidence to characterize the properties and putative phage-host interactions of a newly isolated Alteromonas phage, vB_AcoS-R7M (R7M). A taxonomic study reveals close evolutionary relationships among R7M and a number of siphophages infecting various aquatic copiotrophs. Their similar head morphology and overall genetic framework suggest their putative common ancestry and the grouping of a new viral subfamily. However, their major difference lies in the viral tail adsorption apparatuses and the horizontal exchanges of which possibly account for variations in host specificity. These findings outline an evolutionary scenario for the emergence of diverse viral lineages of a shared genetic pool and give insights into the genetics and ecology of viral host jumps.
Collapse
Affiliation(s)
- Ruijie Ma
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Jiayong Lai
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Long Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Yahui Yang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Institute of Marine Microbes and Ecospheres, Xiamen University, Xiamen, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| |
Collapse
|
10
|
Feng X, Yan W, Wang A, Ma R, Chen X, Lin TH, Chen YL, Wei S, Jin T, Jiao N, Zhang R. A Novel Broad Host Range Phage Infecting Alteromonas. Viruses 2021; 13:v13060987. [PMID: 34073246 PMCID: PMC8228385 DOI: 10.3390/v13060987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
Bacteriophages substantially contribute to bacterial mortality in the ocean and play critical roles in global biogeochemical processes. Alteromonas is a ubiquitous bacterial genus in global tropical and temperate waters, which can cross-protect marine cyanobacteria and thus has important ecological benefits. However, little is known about the biological and ecological features of Alteromonas phages (alterophages). Here, we describe a novel alterophage vB_AmeP-R8W (R8W), which belongs to the Autographiviridae family and infects the deep-clade Alteromonas mediterranea. R8W has an equidistant and icosahedral head (65 ± 1 nm in diameter) and a short tail (12 ± 2 nm in length). The genome size of R8W is 48,825 bp, with a G + C content of 40.55%. R8W possesses three putative auxiliary metabolic genes encoding proteins involved in nucleotide metabolism and DNA binding: thymidylate synthase, nucleoside triphosphate pyrophosphohydrolase, and PhoB. R8W has a rapid lytic cycle with a burst size of 88 plaque-forming units/cell. Notably, R8W has a wide host range, such that it can infect 35 Alteromonas strains; it exhibits a strong specificity for strains isolated from deep waters. R8W has two specific receptor binding proteins and a compatible holin-endolysin system, which contribute to its wide host range. The isolation of R8W will contribute to the understanding of alterophage evolution, as well as the phage-host interactions and ecological importance of alterophages.
Collapse
Affiliation(s)
- Xuejin Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Wei Yan
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- College of Marine Science and Technology, China University of Geosciences, Wuhan 430074, China
| | - Anan Wang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ruijie Ma
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Xiaowei Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Ta-Hui Lin
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Yi-Lung Chen
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Shuzhen Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
| | - Tao Jin
- Guangzhou Magigene Biotechnology Co., Ltd., Guangzhou 510000, China;
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Correspondence: (N.J.); (R.Z.)
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; (X.F.); (W.Y.); (A.W.); (R.M.); (X.C.); (T.-H.L.); (Y.-L.C.); (S.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
- Correspondence: (N.J.); (R.Z.)
| |
Collapse
|
11
|
Zhang X, Liu Y, Wang M, Wang M, Jiang T, Sun J, Gao C, Jiang Y, Guo C, Shao H, Liang Y, McMinn A. Characterization and Genome Analysis of a Novel Marine Alteromonas Phage P24. Curr Microbiol 2020; 77:2813-2820. [PMID: 32588135 DOI: 10.1007/s00284-020-02077-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 06/04/2020] [Indexed: 10/24/2022]
Abstract
Although Alteromonas is ubiquitous in the marine environment, very little is known about Alteromonas phages, with only ten, thus far, being isolated and reported on. In this study, a novel double-stranded DNA phage, Alteromonas phage P24, which infects Alteromonas macleodii, was isolated from the coastal waters off Qingdao. Alteromonas phage P24 has a siphoviral morphology, with an icosahedral head, 61 ± 1 nm in diameter, and a tail length of 105 ± 1 nm. Alteromonas phage P24 contains lipids. It has an optimal temperature and pH for growth of 20℃ and 5-7, respectively. A one-step growth curve shows a latent period of 55 min, a rise period of 65 min, and an average burst size of approximately 147 virions per cell. Alteromonas phage P24 has the genome of 46,945 bp with 43.80% GC content and 74 open reading frames (ORFs) without tRNA. The results of the phylogenetic tree, based on the mcp and terL genes, show that Alteromonas phage P24 is closely related to Aeromonas phage phiARM81ld. Meanwhile, phylogenetic analysis based on the whole genome of P24 indicates that it forms a unique viral sub-cluster within Siphoviridae. This study contributes to the understanding of the genomic characteristics and the virus-host interactions of Alteromonas phages.
Collapse
Affiliation(s)
- Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yundan Liu
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Jianhua Sun
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Chen Gao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Cui Guo
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Yantao Liang
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Andrew McMinn
- College of Marine Life Sciences, Ocean University of China, No. 5 Yushan Road, Shinan District, Qingdao, 266071, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
12
|
Gonzalez-Serrano R, Dunne M, Rosselli R, Martin-Cuadrado AB, Grosboillot V, Zinsli LV, Roda-Garcia JJ, Loessner MJ, Rodriguez-Valera F. Alteromonas Myovirus V22 Represents a New Genus of Marine Bacteriophages Requiring a Tail Fiber Chaperone for Host Recognition. mSystems 2020; 5:e00217-20. [PMID: 32518192 PMCID: PMC7289586 DOI: 10.1128/msystems.00217-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/20/2020] [Indexed: 12/24/2022] Open
Abstract
Marine phages play a variety of critical roles in regulating the microbial composition of our oceans. Despite constituting the majority of genetic diversity within these environments, there are relatively few isolates with complete genome sequences or in-depth analyses of their host interaction mechanisms, such as characterization of their receptor binding proteins (RBPs). Here, we present the 92,760-bp genome of the Alteromonas-targeting phage V22. Genomic and morphological analyses identify V22 as a myovirus; however, due to a lack of sequence similarity to any other known myoviruses, we propose that V22 be classified as the type phage of a new Myoalterovirus genus within the Myoviridae family. V22 shows gene homology and synteny with two different subfamilies of phages infecting enterobacteria, specifically within the structural region of its genome. To improve our understanding of the V22 adsorption process, we identified putative RBPs (gp23, gp24, and gp26) and tested their ability to decorate the V22 propagation strain, Alteromonas mediterranea PT11, as recombinant green fluorescent protein (GFP)-tagged constructs. Only GFP-gp26 was capable of bacterial recognition and identified as the V22 RBP. Interestingly, production of functional GFP-gp26 required coexpression with the downstream protein gp27. GFP-gp26 could be expressed alone but was incapable of host recognition. By combining size-exclusion chromatography with fluorescence microscopy, we reveal how gp27 is not a component of the final RBP complex but instead is identified as a new type of phage-encoded intermolecular chaperone that is essential for maturation of the gp26 RBP.IMPORTANCE Host recognition by phage-encoded receptor binding proteins (RBPs) constitutes the first step in all phage infections and the most critical determinant of host specificity. By characterizing new types of RBPs and identifying their essential chaperones, we hope to expand the repertoire of known phage-host recognition machineries. Due to their genetic plasticity, studying RBPs and their associated chaperones can shed new light onto viral evolution affecting phage-host interactions, which is essential for fields such as phage therapy or biotechnology. In addition, since marine phages constitute one of the most important reservoirs of noncharacterized genetic diversity on the planet, their genomic and functional characterization may be of paramount importance for the discovery of novel genes with potential applications.
Collapse
Affiliation(s)
| | - Matthew Dunne
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Riccardo Rosselli
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Microbiology and Biogeochemistry, Utrecht University, Den Burg, The Netherlands
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Léa V Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Juan J Roda-Garcia
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | - Martin J Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Francisco Rodriguez-Valera
- Evolutionary Genomics Group, Universidad Miguel Hernández, San Juan de Alicante, Spain
- Laboratory for Theoretical and Computer Studies of Biological Macromolecules and Genomes, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| |
Collapse
|
13
|
Wang Q, Liu Y, Liu Q, Liu X, Yang F, Wang M, Shao H, Jiang Y. Isolation and Complete Genome of the Marine Pseudoalteromonas Phage C7 from Coastal Seawater of Yellow Sea, China. Curr Microbiol 2019; 77:279-285. [DOI: 10.1007/s00284-019-01815-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 11/14/2019] [Indexed: 12/11/2022]
|
14
|
Liu Y, Zhao L, Wang M, Wang Q, Zhang X, Han Y, Wang M, Jiang T, Shao H, Jiang Y, McMinn A. Complete genomic sequence of bacteriophage P23: a novel Vibrio phage isolated from the Yellow Sea, China. Virus Genes 2019; 55:834-842. [PMID: 31420829 DOI: 10.1007/s11262-019-01699-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/09/2019] [Indexed: 10/26/2022]
Abstract
A novel Vibrio phage, P23, belonging to the family Siphoviridae was isolated from the surface water of the Yellow Sea, China. The complete genome of this phage was determined. A one-step growth curve showed that the latent period was approximately 30 min, the burst size was 24 PFU/cell, and the rise period was 20 min. The phage is host specific and is stable over a range of pH (5-10) and temperatures (4-65 °C). Transmission electron microscopy showed that phage P23 can be categorized into the Siphoviridae family, with an icosahedral head of 60 nm and a long noncontractile tail of 144 nm. The genome consisted of a linear, double-stranded 40.063 kb DNA molecule with 42.5% G+C content and 72 putative open reading frames (ORFs) without tRNA. The predicted ORFs were classified into six functional groups, including DNA replication, regulation and nucleotide metabolism, transcription, phage packaging, phage structure, lysis, and hypothetical proteins. The Vibrio phage P23 genome is a new marine Siphoviridae-family phage genome that provides basic information for further molecular research on interaction mechanisms between bacteriophages and their hosts.
Collapse
Affiliation(s)
- Yundan Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Lei Zhao
- Qing Dao Municipal Hospital, Qingdao, People's Republic of China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China.
| | - Qi Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Xinran Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Yuye Han
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Meiwen Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Tong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, People's Republic of China.,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, People's Republic of China.,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, People's Republic of China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| |
Collapse
|
15
|
Wang D, Jiang Y, Xiao S, Wang M, Liu Q, Huang L, Xue C, Wang Q, Lin T, Shao H, McMinn A. Characterization and Genome Analysis of a Novel Alteromonas Phage JH01 Isolated from the Qingdao Coast of China. Curr Microbiol 2019; 76:1256-1263. [PMID: 31372731 DOI: 10.1007/s00284-019-01751-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/31/2019] [Accepted: 07/26/2019] [Indexed: 12/27/2022]
Abstract
A novel Alteromonas phage JH01, with the host strain identified to be Alteromonas marina SW-47(T), was isolated from the Qingdao coast during the summer of 2017. Transmission electron microscopy analysis showed that phage JH01 can be categorized into the Siphoviridae family, with an icosahedral head of 62 ± 5 nm and a long contractile tail of 254 ± 10 nm. The bioinformatic analysis shows that this phage consists of a linear, double-stranded 46,500 bp DNA molecule with a GC content of 44.39%, and 58 ORFs with no tRNA genes. The ORFs are classified into four groups, including phage packaging, phage structure, DNA replication and regulation, and hypothetical protein. The phylogenetic tree, constructed using neighbor-joining analysis, shows that phage JH01 has altitudinal homology with some Vibrio and Pseudoalteromonas phage B8b. Comparative analysis reveals the high similarity between phage JH01 and phage B8b. Additionally, our study of phage JH01 provides useful information for further research on the interaction between Alteromonas phages and their hosts.
Collapse
Affiliation(s)
- Dongxu Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Yong Jiang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Shicong Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Min Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China. .,Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, 266003, China. .,Key Lab of Polar Oceanography and Global Ocean Change, Ocean University of China, Qingdao, 266003, China.
| | - Qian Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Liyang Huang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Chenglong Xue
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Qi Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Tongtong Lin
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Hongbing Shao
- College of Marine Life Sciences, Ocean University of China, Qingdao, 266003, China
| | - Andrew McMinn
- Institute for Marine and Antarctic Studies, University of Tasmania, TAS, Private Bag 129, Hobart, 7001, Australia
| |
Collapse
|