1
|
Kloula Ben Ghorbal S, Dhaya I, Ouzari IH, Chatti A. Cyclopropanation and membrane unsaturation improve antibiotic resistance of swarmer Pseudomonas and its sod mutants exposed to radiations, in vitro and in silico approch. World J Microbiol Biotechnol 2024; 40:243. [PMID: 38869625 DOI: 10.1007/s11274-024-04033-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/22/2024] [Indexed: 06/14/2024]
Abstract
It was known that UVc irradiation increases the reactive oxygen species' (ROS) levels in bacteria hence the intervention of antioxidant enzymes and causes also changes in fatty acids (FAs) composition enabling bacteria to face antibiotics. Here, we intended to elucidate an interrelationship between SOD and susceptibility to antibiotics by studying FA membrane composition of UVc-treated P. aeruginosa PAO1 and its isogenic mutants (sodM, sodB and sod MB) membrane, after treatment with antibiotics. Swarmer mutants defective in genes encoding superoxide dismutase were pre-exposed to UVc radiations and then tested by disk diffusion method for their contribution to antibiotic tolerance in comparison with the P. aeruginosa wild type (WT). Moreover, fatty acid composition of untreated and UVc-treated WT and sod mutants was examined by Gaz chromatography and correlated to antibiotic resistance. Firstly, it has been demonstrated that after UVc exposure, swarmer WT strain, sodM and sodB mutants remain resistant to polymixin B, a membrane target antibiotic, through membrane unsaturation supported by the intervention of Mn-SOD after short UVc exposure and cyclopropanation of unsaturated FAs supported by the action of Fe-SOD after longer UVc exposure. However, resistance for ciprofloxacin is correlated with increase in saturated FAs. This correlation has been confirmed by a molecular docking approach showing that biotin carboxylase, involved in the initial stage of FA biosynthesis, exhibits a high affinity for ciprofloxacin. This investigation has explored the correlation of antibiotic resistance with FA content of swarmer P.aeruginosa pre-exposed to UVc radiations, confirmed to be antibiotic target dependant.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia.
| | - Ibtihel Dhaya
- LR18ES03- Laboratory of Neurophysiology Cellular Physiopathology and Biomolecules Valorization, University of Tunis El Manar, Tunis, Tunisia
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives, Faculté des Sciences de Tunis, Physiques et Naturelles de Tunis, University Tunis El Manar, Tunis, Tunisia
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, BP 273, 8020, Soliman, Tunisia
- Unite de Biochimie des Lipides et Interactions des Macromolécules en Biologie (03/UR/0902), Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna, 7021, Bizerte, Tunisia
| |
Collapse
|
2
|
Ben Ghorbal SK, Maalej L, Ouzari IH, Chatti A. Implication of Mn-cofactored superoxide dismutase in the tolerance of swarmer Pseudomonas aeruginosa to polymixin, ciprofloxacin and meropenem antibiotics. World J Microbiol Biotechnol 2023; 39:347. [PMID: 37856014 DOI: 10.1007/s11274-023-03801-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 10/09/2023] [Indexed: 10/20/2023]
Abstract
The protective role of superoxide dismutase (Sod) against oxidative stress, resulting from the common antibiotic pathway of action, has been studied in the wild type and mutant strains of swarmer Pseudomonas aeruginosa, lacking Cytosolic Mn-Sod (sodM), Fe-Sod (sodB) or both Sods (sodMB).Our results showed that inactivation of sodB genes leads to significant motility defects and tolerance to meropenem. This resistance is correlated with a greater membrane unsaturation as well as an effective intervention of Mn-Sod isoform, in antibiotic tolerance.Moreover, loss of Mn-Sod in sodM mutant, leads to polymixin intolerance and is correlated with membrane unsaturation. Effectivelty, sodM mutant showed an enhanced swarming motility and a conserved rhamnolipid production. Whereas, in the double mutant sodMB, ciprofloxacin tolerance would be linked to an increase in the percentage of saturated fatty acids in the membrane, even in the absence of superoxide dismutase activity.The overall results showed that Mn-Sod has a protective role in the tolerance to antibiotics, in swarmer P.aeruginosa strain. It has been further shown that Sod intervention in antibiotic tolerance is through change in membrane fatty acid composition.
Collapse
Affiliation(s)
- Salma Kloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie.
| | - Lobna Maalej
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
| | - Imene-Hadda Ouzari
- Laboratoire des Microorganismes et Biomolécules Actives (LMBA), Facult e des Sciences de Tunis Campus Universitaire, El Manar II, Tunisie
| | - Abdelwaheb Chatti
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées Technopole Borj Cedria, BP 273, Soliman, 8020, Tunisie
- Unite de Biochimie des lipides et interactions des macromolécules en Biologie, Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Zarzouna, Bizerte, 7021, Tunisia
| |
Collapse
|
3
|
Wang J, Zhao X, Zheng J, Herrera-Balandrano DD, Zhang X, Huang W, Sui Z. In vivo antioxidant activity of rabbiteye blueberry ( Vaccinium ashei cv. 'Brightwell') anthocyanin extracts. J Zhejiang Univ Sci B 2023; 24:602-616. [PMID: 37455137 PMCID: PMC10350366 DOI: 10.1631/jzus.b2200590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/17/2023] [Indexed: 05/23/2023]
Abstract
Blueberries are rich in phenolic compounds including anthocyanins which are closely related to biological health functions. The purpose of this study was to investigate the antioxidant activity of blueberry anthocyanins extracted from 'Brightwell' rabbiteye blueberries in mice. After one week of adaptation, C57BL/6J healthy male mice were divided into different groups that were administered with 100, 400, or 800 mg/kg blueberry anthocyanin extract (BAE), and sacrificed at different time points (0.1, 0.5, 1, 2, 4, 8, or 12 h). The plasma, eyeball, intestine, liver, and adipose tissues were collected to compare their antioxidant activity, including total antioxidant capacity (T-AOC), superoxide dismutase (SOD) activity and glutathione-peroxidase (GSH-PX/GPX) content, and the oxidative stress marker malondialdehyde (MDA) level. The results showed that blueberry anthocyanins had positive concentration-dependent antioxidant activity in vivo. The greater the concentration of BAE, the higher the T-AOC value, but the lower the MDA level. The enzyme activity of SOD, the content of GSH-PX, and messenger RNA (mRNA) levels of Cu,Zn-SOD, Mn-SOD, and GPX all confirmed that BAE played an antioxidant role after digestion in mice by improving their antioxidant defense. The in vivo antioxidant activity of BAE indicated that blueberry anthocyanins could be developed into functional foods or nutraceuticals with the aim of preventing or treating oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xingyu Zhao
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jiawei Zheng
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | - Xiaoxiao Zhang
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Wuyang Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
- Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Zhongquan Sui
- Department of Food Science & Engineering, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China. ,
| |
Collapse
|
4
|
The use of the electromagnetic field in microbial process bioengineering. ADVANCES IN APPLIED MICROBIOLOGY 2022; 121:27-72. [PMID: 36328731 DOI: 10.1016/bs.aambs.2022.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
An electromagnetic field (EMF) has been shown to have various stimulatory or inhibitory effects on microorganisms. Over the years, growing interest in this topic led to numerous discoveries suggesting the potential applicability of EMF in biotechnological processes. Among these observations are stimulative effects of this physical influence resulting in intensified biomass production, modification of metabolic activity, or pigments secretion. In this review, we present the current state of the art and underline the main findings of the application of EMF in bioprocessing and their practical meaning in process engineering using examples selected from studies on bacteria, archaea, microscopic fungi and yeasts, viruses, and microalgae. All biological data are presented concerning the classification of EMF. Furthermore, we aimed to highlight missing parts of contemporary knowledge and indicate weak spots in the approaches found in the literature.
Collapse
|
5
|
Li H, Xie R, Xu X, Liao X, Guo J, Fang Y, Fang Z, Huang J. Static Magnetic Field Inhibits Growth of Escherichia coli Colonies via Restriction of Carbon Source Utilization. Cells 2022; 11:cells11050827. [PMID: 35269449 PMCID: PMC8909705 DOI: 10.3390/cells11050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/01/2023] Open
Abstract
Magnetobiological effects on growth and virulence have been widely reported in Escherichia coli (E. coli). However, published results are quite varied and sometimes conflicting because the underlying mechanism remains unknown. Here, we reported that the application of 250 mT static magnetic field (SMF) significantly reduces the diameter of E. coli colony-forming units (CFUs) but has no impact on the number of CFUs. Transcriptomic analysis revealed that the inhibitory effect of SMF is attributed to differentially expressed genes (DEGs) primarily involved in carbon source utilization. Consistently, the addition of glycolate or glyoxylate to the culture media successfully restores the bacterial phenotype in SMF, and knockout mutants lacking glycolate oxidase are no longer sensitive to SMF. These results suggest that SMF treatment results in a decrease in glycolate oxidase activity. In addition, metabolomic assay showed that long-chain fatty acids (LCFA) accumulate while phosphatidylglycerol and middle-chain fatty acids decrease in the SMF-treated bacteria, suggesting that SMF inhibits LCFA degradation. Based on the published evidence together with ours derived from this study, we propose a model showing that free radicals generated by LCFA degradation are the primary target of SMF action, which triggers the bacterial oxidative stress response and ultimately leads to growth inhibition.
Collapse
Affiliation(s)
- Haodong Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Runnan Xie
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xiang Xu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Xingru Liao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Jiaxin Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
| | - Yanwen Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Zhicai Fang
- Heye Health Industrial Research Institute, Zhejiang Heye Health Technology, Anji, Huzhou 313300, China; (Y.F.); (Z.F.)
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai 200234, China; (H.L.); (R.X.); (X.X.); (X.L.); (J.G.)
- Correspondence:
| |
Collapse
|
6
|
Effect of static magnetic field (200 mT) on biofilm formation in Pseudomonas aeruginosa. Arch Microbiol 2019; 202:77-83. [DOI: 10.1007/s00203-019-01719-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/20/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
|
7
|
Sampson C, Keens RH, Kattnig DR. On the magnetosensitivity of lipid peroxidation: two- versus three-radical dynamics. Phys Chem Chem Phys 2019; 21:13526-13538. [PMID: 31210238 DOI: 10.1039/c9cp01746a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
We present a theoretical analysis of the putative magnetosensitivity of lipid peroxidation. We focus on the widely accepted radical pair mechanism (RPM) and a recently suggested idea based on spin dynamics induced in three-radical systems by the mutual electron-electron dipolar coupling (D3M). We show that, contrary to claims in the literature, lipid peroxides, the dominant chain carriers of the autoxidation process, have associated non-zero hyperfine coupling interactions. This suggests that their recombination could, in principle, be magnetosensitive due to the RPM. While the RPM indeed goes a long way to explaining magnetosensitivity in these systems, we show that the simultaneous interaction of three peroxyl radicals via the D3M can achieve larger magnetic field effects (MFE), even if the third radical is remote from the recombining radical pair. For randomly oriented three-radical systems, the D3M induces a low-field effect comparable to that of the RPM. The mechanism furthermore immunizes the spin dynamics to the presence of large exchange coupling interactions in the recombining radical pair, thereby permitting much larger MFE at magnetic field intensities comparable to the geomagnetic field than would be expected for the RPM. Based on these characteristics, we suggest that the D3M could be particularly relevant for MFE at low fields, provided that the local radical concentration is sufficient to allow for three-spin radical correlations. Eventually, our observations suggest that MFEs could intricately depend on radical concentration and larger effects could ensue under conditions of oxidative stress.
Collapse
Affiliation(s)
- Chris Sampson
- Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, UK.
| | | | | |
Collapse
|
8
|
Kthiri A, Hidouri S, Wiem T, Jeridi R, Sheehan D, Landouls A. Biochemical and biomolecular effects induced by a static magnetic field in Saccharomyces cerevisiae: Evidence for oxidative stress. PLoS One 2019; 14:e0209843. [PMID: 30608963 PMCID: PMC6319737 DOI: 10.1371/journal.pone.0209843] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 12/12/2018] [Indexed: 01/12/2023] Open
Abstract
Exposure to static magnetic fields (SMF) can cause changes in microorganism metabolism altering key subcellular functions. The purpose of this study was to investigate whether an applied SMF could induce biological effects on growth of Saccharomyces cerevisiae, and then to probe biochemical and bio-molecular responses. We found a decrease in growth and viability under SMF (250mT) after 6h with a significant decrease in colony forming units followed by an increase between 6 h and 9 h. Moreover, measurements of antioxidant enzyme activities (catalase, superoxide dismutase, glutathione peroxidase) demonstrated a particular profile suggesting oxidative stress. For instance, SOD and catalase activities increased in magnetized cultures after 9 h compared with unexposed samples. However, SMF exposure caused a decrease in glutathione peroxidase activity. Finally, SMF caused an increase in MDA levels as well as the content of protein carbonyl groups after 6 and 9 h of exposure.
Collapse
Affiliation(s)
- Ameni Kthiri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
| | - Slah Hidouri
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Tahri Wiem
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - Roua Jeridi
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| | - David Sheehan
- Environmental Research Institute and School of Biochemistry and Cell Biology, University College Cork, Western Gateway Building, Western Road, Cork, Ireland
- Dept of Chemistry, College of Arts and Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
- * E-mail:
| | - Ahmed Landouls
- Laboratory of Biochemistry and Molecular Biology, Carthage University, Faculty of Sciences of Bizerte, Zarzouna, Bizerte, Tunisia
| |
Collapse
|