1
|
Urquhart AS, Elliott CE, Zeng W, Idnurm A. Constitutive expression of transcription factor SirZ blocks pathogenicity in Leptosphaeria maculans independently of sirodesmin production. PLoS One 2021; 16:e0252333. [PMID: 34111151 PMCID: PMC8191991 DOI: 10.1371/journal.pone.0252333] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/14/2021] [Indexed: 11/28/2022] Open
Abstract
Sirodesmin, the major secondary metabolite produced by the plant pathogenic fungus Leptosphaeria maculans in vitro, has been linked to disease on Brassica species since the 1970s, and yet its role has remained ambiguous. Re-examination of gene expression data revealed that all previously described genes and two newly identified genes within the sir gene cluster in the genome are down-regulated during the crucial early establishment stages of blackleg disease on Brassica napus. To test if this is a strategy employed by the fungus to avoid damage to and then detection by the host plant during the L. maculans asymptomatic biotrophic phase, sirodesmin was produced constitutively by overexpressing the sirZ gene encoding the transcription factor that coordinates the regulation of the other genes in the sir cluster. The sirZ over-expression strains had a major reduction in pathogenicity. Mutation of the over-expression construct restored pathogenicity. However, mutation of two genes, sirP and sirG, required for specific steps in the sirodesmin biosynthesis pathway, in the sirZ over-expression background resulted in strains that were unable to synthesize sirodesmin, yet were still non-pathogenic. Elucidating the basis for this pathogenicity defect or finding ways to overexpress sirZ during disease may provide new strategies for the control of blackleg disease.
Collapse
Affiliation(s)
- Andrew S. Urquhart
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Applied BioSciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Candace E. Elliott
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Biosecurity Operations Division, Department of Agriculture, Water and the Environment, Post Entry Quarantine, Mickleham, Victoria, Australia
| | - Wei Zeng
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
- Sino-Australia Plant Cell Wall Research Centre, State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Alexander Idnurm
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
2
|
Urquhart AS, Idnurm A. Limitations of transcriptome-based prediction of pathogenicity genes in the plant pathogen Leptosphaeria maculans. FEMS Microbiol Lett 2020; 366:5475121. [PMID: 30998236 DOI: 10.1093/femsle/fnz080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 04/16/2019] [Indexed: 01/02/2023] Open
Abstract
Identification of pathogenicity determinants in Leptosphaeria maculans, a major cause of disease of oilseed crops, has been a focus of research for many years. A wealth of gene expression information from RNA sequencing promises to illuminate the mechanisms by which the fungus is able to cause blackleg disease. However, to date, no studies have tested the hypothesis that high gene transcript levels during infection correlate with importance to disease progression. In this study, we use CRISPR-Cas9 to disrupt 11 genes that are highly expressed during the early stages of disease and show that none of these genes are crucial for fungal pathogenicity on Brassica napus. This finding suggests that in order to understand the pathogenicity of this fungus more sophisticated techniques than simple expression analysis will need to be employed.
Collapse
Affiliation(s)
- Andrew S Urquhart
- School of BioSciences, 1929 Botany Building, the University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander Idnurm
- School of BioSciences, 1929 Botany Building, the University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
3
|
Urquhart AS, Mondo SJ, Mäkelä MR, Hane JK, Wiebenga A, He G, Mihaltcheva S, Pangilinan J, Lipzen A, Barry K, de Vries RP, Grigoriev IV, Idnurm A. Genomic and Genetic Insights Into a Cosmopolitan Fungus, Paecilomyces variotii (Eurotiales). Front Microbiol 2018; 9:3058. [PMID: 30619145 PMCID: PMC6300479 DOI: 10.3389/fmicb.2018.03058] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 11/27/2018] [Indexed: 02/02/2023] Open
Abstract
Species in the genus Paecilomyces, a member of the fungal order Eurotiales, are ubiquitous in nature and impact a variety of human endeavors. Here, the biology of one common species, Paecilomyces variotii, was explored using genomics and functional genetics. Sequencing the genome of two isolates revealed key genome and gene features in this species. A striking feature of the genome was the two-part nature, featuring large stretches of DNA with normal GC content separated by AT-rich regions, a hallmark of many plant-pathogenic fungal genomes. These AT-rich regions appeared to have been mutated by repeat-induced point (RIP) mutations. We developed methods for genetic transformation of P. variotii, including forward and reverse genetics as well as crossing techniques. Using transformation and crossing, RIP activity was identified, demonstrating for the first time that RIP is an active process within the order Eurotiales. A consequence of RIP is likely reflected by a reduction in numbers of genes within gene families, such as in cell wall degradation, and reflected by growth limitations on P. variotii on diverse carbon sources. Furthermore, using these transformation tools we characterized a conserved protein containing a domain of unknown function (DUF1212) and discovered it is involved in pigmentation.
Collapse
Affiliation(s)
- Andrew S Urquhart
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| | - Stephen J Mondo
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Miia R Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Biocenter 1, University of Helsinki, Helsinki, Finland
| | - James K Hane
- CCDM Bioinformatics, Centre for Crop and Disease Management, Curtin University, Bentley, WA, Australia.,Curtin Institute for Computation, Curtin University, Bentley, WA, Australia
| | - Ad Wiebenga
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Guifen He
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Sirma Mihaltcheva
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Jasmyn Pangilinan
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Anna Lipzen
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Kerrie Barry
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, Netherlands
| | - Igor V Grigoriev
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA, United States
| | - Alexander Idnurm
- School of BioSciences, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|