1
|
You Y, Xiao J, Chen J, Li Y, Li R, Zhang S, Jiang Q, Liu P. Integrated Information for Pathogenicity and Treatment of Spiroplasma. Curr Microbiol 2024; 81:252. [PMID: 38953991 DOI: 10.1007/s00284-024-03730-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/05/2024] [Indexed: 07/04/2024]
Abstract
Spiroplasma, belonging to the class Mollicutes, is a small, helical, motile bacterium lacking a cell wall. Its host range includes insects, plants, and aquatic crustaceans. Recently, a few human cases of Spiroplasma infection have been reported. The diseases caused by Spiroplasma have brought about serious economic losses and hindered the healthy development of agriculture. The pathogenesis of Spiroplasma involves the ability to adhere, such as through the terminal structure of Spiroplasma, colonization, and invasive enzymes. However, the exact pathogenic mechanism of Spiroplasma remains a mystery. Therefore, we systematically summarize all the information about Spiroplasma in this review article. This provides a reference for future studies on virulence factors and treatment strategies of Spiroplasma.
Collapse
Affiliation(s)
- Yixue You
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jianmin Xiao
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Jiaxin Chen
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Yuxin Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Rong Li
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Siyuan Zhang
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China.
| | - Peng Liu
- Institute of Pathogenic Biology, Basic Medical School, Hengyang Medical School, University of South China, Hengyang, 421001, China.
- Hunan Provincial Key Laboratory for Special Pathogens Prevention and Control, Institute of Pathogenic Biology, Hengyang Medical College, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
2
|
Masson F, Calderon‐Copete S, Schüpfer F, Vigneron A, Rommelaere S, Garcia‐Arraez MG, Paredes JC, Lemaitre B. Blind killing of both male and female Drosophila embryos by a natural variant of the endosymbiotic bacterium Spiroplasma poulsonii. Cell Microbiol 2020; 22:e13156. [PMID: 31912942 PMCID: PMC7187355 DOI: 10.1111/cmi.13156] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Spiroplasma poulsonii is a vertically transmitted endosymbiont of Drosophila melanogaster that causes male-killing, that is the death of infected male embryos during embryogenesis. Here, we report a natural variant of S. poulsonii that is efficiently vertically transmitted yet does not selectively kill males, but kills rather a subset of all embryos regardless of their sex, a phenotype we call 'blind-killing'. We show that the natural plasmid of S. poulsonii has an altered structure: Spaid, the gene coding for the male-killing toxin, is deleted in the blind-killing strain, confirming its function as a male-killing factor. Then we further investigate several hypotheses that could explain the sex-independent toxicity of this new strain on host embryos. As the second non-male-killing variant isolated from a male-killing original population, this new strain raises questions on how male-killing is maintained or lost in fly populations. As a natural knock-out of Spaid, which is unachievable yet by genetic engineering approaches, this variant also represents a valuable tool for further investigations on the male-killing mechanism.
Collapse
Affiliation(s)
- Florent Masson
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Sandra Calderon‐Copete
- Center for Integrative GenomicsLausanne Genomic Technologies FacilityLausanneSwitzerland
| | - Fanny Schüpfer
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Aurélien Vigneron
- Department of Epidemiology of Microbial DiseasesYale School of Public HealthNew HavenConnecticut
| | - Samuel Rommelaere
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mario G. Garcia‐Arraez
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Juan C. Paredes
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Present address:
International Centre of Insect Physiology and Ecology (ICIPE)KasaraniNairobiKenya
| | - Bruno Lemaitre
- Global Health Institute, School of Life SciencesÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|