1
|
Barreto JVDO, Casanova LM, Junior AN, Reis-Mansur MCPP, Vermelho AB. Microbial Pigments: Major Groups and Industrial Applications. Microorganisms 2023; 11:2920. [PMID: 38138065 PMCID: PMC10745774 DOI: 10.3390/microorganisms11122920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial pigments have many structures and functions with excellent characteristics, such as being biodegradable, non-toxic, and ecologically friendly, constituting an important source of pigments. Industrial production presents a bottleneck in production cost that restricts large-scale commercialization. However, microbial pigments are progressively gaining popularity because of their health advantages. The development of metabolic engineering and cost reduction of the bioprocess using industry by-products opened possibilities for cost and quality improvements in all production phases. We are thus addressing several points related to microbial pigments, including the major classes and structures found, the advantages of use, the biotechnological applications in different industrial sectors, their characteristics, and their impacts on the environment and society.
Collapse
Affiliation(s)
| | | | | | | | - Alane Beatriz Vermelho
- Bioinovar Laboratory, Institute of Microbiology Paulo de Goes, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (J.V.d.O.B.); (L.M.C.); (A.N.J.); (M.C.P.P.R.-M.)
| |
Collapse
|
2
|
Huang R, Zhang H, Chen H, He L, Liu X, Zhang Z. The determination of the biological function of bacterial pink pigment and Fusarium chlamydosporum on alfalfa ( Medicago sativa L.). Front Microbiol 2023; 14:1285961. [PMID: 37928657 PMCID: PMC10620923 DOI: 10.3389/fmicb.2023.1285961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/22/2023] [Indexed: 11/07/2023] Open
Abstract
Bacterial pigment is one of the secondary metabolites produced by bacteria and has functions that are yet to be understood in relation to soil-borne pathogenic fungi and plants in mutualistic processes. The study evaluates the growth, photosynthetic, and physiological characteristics of alfalfa after interacting with different concentrations of Cp2 pink pigment and Fusarium chlamydosporum. The findings showed that Cp2 pink pigment has the ability to inhibit the growth of alfalfa, with the inhibition ratio gradually increasing with rising concentration. F. chlamydosporum inhibited the growth of alfalfa, which reduced the photosynthetic physiological response and elevated antioxidant enzymes, which are typically manifested by yellowing leaves and shortened roots. Under the combined effect of Cp2 pink pigment and F. chlamydosporum, increasing concentrations of Cp2 pink pigment intensified the symptoms in alfalfa and led to more pronounced growth and physiological response. This indicates that the Cp2 pink pigment is one of the potential virulence factors secreted by the Erwinia persicina strain Cp2, which plays an inhibitory role in the interactions between F. chlamydosporum and alfalfa, and also has the potential to be developed into a plant immunomodulator agent.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhenfen Zhang
- Key Laboratory of Grassland Ecosystem, Ministry of Education, Sino-U.S. Centers for Grazing Land Ecosystem Sustainability, Ministry of Science and Technology, Pratacultural College, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
3
|
Pasdaran A, Zare M, Hamedi A, Hamedi A. A Review of the Chemistry and Biological Activities of Natural Colorants, Dyes, and Pigments: Challenges, and Opportunities for Food, Cosmetics, and Pharmaceutical Application. Chem Biodivers 2023; 20:e202300561. [PMID: 37471105 DOI: 10.1002/cbdv.202300561] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/21/2023]
Abstract
Natural pigments are important sources for the screening of bioactive lead compounds. This article reviewed the chemistry and therapeutic potentials of over 570 colored molecules from plants, fungi, bacteria, insects, algae, and marine sources. Moreover, related biological activities, advanced extraction, and identification approaches were reviewed. A variety of biological activities, including cytotoxicity against cancer cells, antioxidant, anti-inflammatory, wound healing, anti-microbial, antiviral, and anti-protozoal activities, have been reported for different pigments. Considering their structural backbone, they were classified as naphthoquinones, carotenoids, flavonoids, xanthones, anthocyanins, benzotropolones, alkaloids, terpenoids, isoprenoids, and non-isoprenoids. Alkaloid pigments were mostly isolated from bacteria and marine sources, while flavonoids were mostly found in plants and mushrooms. Colored quinones and xanthones were mostly extracted from plants and fungi, while colored polyketides and terpenoids are often found in marine sources and fungi. Carotenoids are mostly distributed among bacteria, followed by fungi and plants. The pigments isolated from insects have different structures, but among them, carotenoids and quinone/xanthone are the most important. Considering good manufacturing practices, the current permitted natural colorants are: Carotenoids (canthaxanthin, β-carotene, β-apo-8'-carotenal, annatto, astaxanthin) and their sources, lycopene, anthocyanins, betanin, chlorophyllins, spirulina extract, carmine and cochineal extract, henna, riboflavin, pyrogallol, logwood extract, guaiazulene, turmeric, and soy leghemoglobin.
Collapse
Affiliation(s)
- Ardalan Pasdaran
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zare
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student research committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Azar Hamedi
- School of Agriculture, Shiraz University, Shiraz, Iran
| | - Azadeh Hamedi
- Department of Pharmacognosy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Medicinal Plants Processing Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
4
|
Masoud MS, Ramadan AM, Ahmed MM. Spectral, Thermal Behavior, Molecular Modeling, and Antimicrobial Studies of Fuchsin Basic Hydrochloride. ChemistrySelect 2022. [DOI: 10.1002/slct.202203343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mamdouh S. Masoud
- Department of Chemistry Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Ahmed M. Ramadan
- Department of Chemistry Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| | - Mahmoud M. Ahmed
- Department of Chemistry Alexandria University P.O. Box 426 Alexandria 21321 Egypt
| |
Collapse
|
5
|
Numan M, Shah M, Asaf S, Ur Rehman N, Al-Harrasi A. Bioactive Compounds from Endophytic Bacteria Bacillus subtilis Strain EP1 with Their Antibacterial Activities. Metabolites 2022; 12:1228. [PMID: 36557265 PMCID: PMC9788538 DOI: 10.3390/metabo12121228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Endophytic bacteria boost host plant defense and growth by producing vital compounds. In the current study, a bacterial strain was isolated from the Boswellia sacra plant and identified as Bacillus subtilis strain EP1 (accession number: MT256301) through 16S RNA gene sequencing. From the identified bacteria, four compounds-1 (4-(4-cinnamoyloxy)phenyl)butanoic acid), 2 (cyclo-(L-Pro-D-Tyr)), 3 (cyclo-(L-Val-L-Phe)), and 4 (cyclo-(L-Pro-L-Val))-were isolated and characterized by 1D and 2D NMR and mass spectroscopy. Moreover, antibacterial activity and beta-lactam-producing gene inhibition (δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase (ACVS) and aminoadipate aminotransferase (AADAT)) assays were performed. Significant antibacterial activity was observed against the human pathogenic bacterial strains (E. coli) by compound 4 with a 13 ± 0.7 mm zone of inhibition (ZOI), followed by compound 1 having an 11 ± 0.7 mm ZOI. In contrast, the least antibacterial activity among the tested samples was offered by compound 2 with a 10 ± 0.9 mm ZOI compared to the standard (26 ± 1.2 mm). Similarly, the molecular analysis of beta-lactam inhibition determined that compounds 3 and 4 inhibited the two genes (2- to 4-fold) in the beta-lactam biosynthesis (ACVS and AADAT) pathway. From these results, it can be concluded that future research on these compounds could lead to the inhibition of antibiotic-resistant pathogenic bacterial strains.
Collapse
Affiliation(s)
- Muhammad Numan
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Biology, University of North Carolina at Greensboro, Greensboro, NC 27412, USA
| | - Muddaser Shah
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
- Department of Botany, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan
| | - Sajjad Asaf
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Najeeb Ur Rehman
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
6
|
Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pigments from bacteria, fungi, yeast, cyanobacteria, and microalgae have been gaining more demand in the food, leather, and textile industries due to their natural origin and effective bioactive functions. Mass production of microbial pigments using inexpensive and ecofriendly agro-industrial residues is gaining more demand in the current research due to their low cost, natural origin, waste utilization, and high pigment stimulating characteristics. A wide range of natural substrates has been employed in submerged fermentation as carbon and nitrogen sources to enhance the pigment production from these microorganisms to obtain the required quantity of pigments. Submerged fermentation is proven to yield more pigment when added with agro-waste residues. Hence, in this review, aspects of potential pigmented microbes such as diversity, natural substrates that stimulate more pigment production from bacteria, fungi, yeast, and a few microalgae under submerged culture conditions, pigment identification, and ecological functions are detailed for the benefit of industrial personnel, researchers, and other entrepreneurs to explore pigmented microbes for multifaceted applications. In addition, some important aspects of microbial pigments are covered herein to disseminate the knowledge.
Collapse
|
7
|
Shahin YH, Elwakil BH, Ghareeb DA, Olama ZA. Micrococcus lylae MW407006 Pigment: Production, Optimization, Nano-Pigment Synthesis, and Biological Activities. BIOLOGY 2022; 11:biology11081171. [PMID: 36009797 PMCID: PMC9405233 DOI: 10.3390/biology11081171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 07/25/2022] [Accepted: 07/29/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary The global crisis of increased mortality rates due to the emergence of antimicrobial resistance and cancers has increased researchers’ efforts to find new, potent solutions through implementing natural products in the pharmaceutical industry. The present investigation produced echinenone (yellowish-orange pigment) from Micrococcus lylae MW407006 with potent pharmacological activities. A response surface methodology statistical design was used to optimize the biomass production, pigment concentration, and antimicrobial activity. The Spearman correlation coefficient was assessed, which indicated a strong linear relationship between biomass production, pigment concentration, and antimicrobial activity. Nano-echinenone was physically synthesized through the ball-milling technique. The synthesized nano-echinenone showed higher pharmacological activities (antimicrobial, antioxidant, and antitumor activities) in comparison with the crude pigment. The significantly high selectivity index of the synthesized nano-echinenone proved its safety and paved the way for its possible use in the pharmaceutical industry. Abstract Bacterial pigments (e.g., melanin and carotenoids) are considered to be among the most important secondary metabolites due to their various pharmacological activities against cancer and microbial resistance. Different pigmented bacterial strains were isolated from soil samples from El Mahmoudiyah governance and screened for their antimicrobial activity. The most promising pigment producer was identified as Micrococcus lylae MW407006; furthermore, the produced pigment was identified as echinenone (β-carotene pigment). The pigment production was optimized through a central composite statistical design to maximize the biomass production, pigment concentration, and the antimicrobial activity. It was revealed that the most significant fermentation parameters were the glucose (as a carbon source) and asparagine (as a nitrogen source) concentrations. Nano-echinenone was synthesized using the ball milling technique, characterized, and finally assessed for potential antimicrobial, antioxidant, and antitumor activities. The data revealed that the synthesized nano-echinenone had higher antimicrobial activity than the crude pigment. The cytotoxic potency of echinenone and nano-echinenone was investigated in different cell lines (normal and cancer cells). The inhibition of cell proliferation and induction of cell death was observed in Caco-2 and Hep-G2 cells. The data proved that nano-echinenone is a suitable candidate for use as a safe antimicrobial and anti-hepatocellular-carcinoma agent.
Collapse
Affiliation(s)
- Yahya H. Shahin
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21648, Egypt
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences Technology, Pharos University in Alexandria, Alexandria 21648, Egypt
- Correspondence:
| | - Doaa A. Ghareeb
- Biological Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| | - Zakia A. Olama
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria 21526, Egypt
| |
Collapse
|
8
|
Yadav A, Yadav SS, Singh S, Dabur R. Natural products: Potential therapeutic agents to prevent skeletal muscle atrophy. Eur J Pharmacol 2022; 925:174995. [PMID: 35523319 DOI: 10.1016/j.ejphar.2022.174995] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 04/19/2022] [Accepted: 04/28/2022] [Indexed: 12/16/2022]
Abstract
The skeletal muscle (SkM) is the largest organ, which plays a vital role in controlling musculature, locomotion, body heat regulation, physical strength, and metabolism of the body. A sedentary lifestyle, aging, cachexia, denervation, immobilization, etc. Can lead to an imbalance between protein synthesis and degradation, which is further responsible for SkM atrophy (SmA). To date, the understanding of the mechanism of SkM mass loss is limited which also restricted the number of drugs to treat SmA. Thus, there is an urgent need to develop novel approaches to regulate muscle homeostasis. Presently, some natural products attained immense attraction to regulate SkM homeostasis. The natural products, i.e., polyphenols (resveratrol, curcumin), terpenoids (ursolic acid, tanshinone IIA, celastrol), flavonoids, alkaloids (tomatidine, magnoflorine), vitamin D, etc. exhibit strong potential against SmA. Some of these natural products have been reported to have equivalent potential to standard treatments to prevent body lean mass loss. Indeed, owing to the large complexity, diversity, and slow absorption rate of bioactive compounds made their usage quite challenging. Moreover, the use of natural products is controversial due to their partially known or elusive mechanism of action. Therefore, the present review summarizes various experimental and clinical evidence of some important bioactive compounds that shall help in the development of novel strategies to counteract SmA elicited by various causes.
Collapse
Affiliation(s)
- Aarti Yadav
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Surender Singh Yadav
- Department of Botany, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Sandeep Singh
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India
| | - Rajesh Dabur
- Clinical Biochemistry Laboratory, Department of Biochemistry, Maharshi Dayanand University, Rohtak, 124001, Haryana, India.
| |
Collapse
|
9
|
Characterization of Bioactive Colored Materials Produced from Bacterial Cellulose and Bacterial Pigments. MATERIALS 2022; 15:ma15062069. [PMID: 35329521 PMCID: PMC8949564 DOI: 10.3390/ma15062069] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/07/2022] [Accepted: 03/09/2022] [Indexed: 01/12/2023]
Abstract
A Bacterial Cellulose (BC) film was developed and characterized as a potential functional bioactive material. BC films, obtained from a microbial consortium of bacteria and yeast species, were functionalized with the bacterial pigment prodigiosin, produced by Serratia plymuthica, and flexirubin-type pigment, from Chryseobacterium shigense, which exhibit a wide range of biological properties. BC was successfully functionalized at 15% over the weight of the fiber at 40 °C during 60 min, and a color strength of 1.00 ± 0.01 was obtained for BC_prodigiosin and 0.38 ± 0.02 for BC_flexirubin-type pigment. Moreover, the BC films showed moderate hydrophilic character following alkaline treatment, which was maintained after both pigments were incorporated. The porosity and mechanical performance of the functionalized BC samples also remained unaffected. Furthermore, the BC samples functionalized with prodigiosin presented antibacterial activity and were able to inhibit the growth of pathogenic bacteria Staphylococcus aureus and Pseudomonas aeruginosa, with inhibition rates of 97.89 ± 0.60% and 85.12 ± 0.17%, respectively, while BC samples functionalized with flexirubin-type pigment exhibited the highest antioxidant activity, at 38.96 ± 0.49%. This research provides an eco-friendly approach to grant BC film-based material with color and advantageous bioactive properties, which can find application in several fields, especially for medical purposes.
Collapse
|
10
|
Amorim LFA, Mouro C, Riool M, Gouveia IC. Antimicrobial Food Packaging Based on Prodigiosin-Incorporated Double-Layered Bacterial Cellulose and Chitosan Composites. Polymers (Basel) 2022; 14:polym14020315. [PMID: 35054720 PMCID: PMC8781631 DOI: 10.3390/polym14020315] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nowadays, food packaging systems have shifted from a passive to an active role in which the incorporation of antimicrobial compounds into biopolymers can promote a sustainable way to reduce food spoilage and its environmental impact. Accordingly, composite materials based on oxidized-bacterial cellulose (BC) and poly(vinyl alcohol)-chitosan (PVA-CH) nanofibers were produced by needleless electrospinning and functionalized with the bacterial pigment prodigiosin (PG). Two strategies were explored, in the first approach PG was incorporated in the electrospun PVA-CH layer, and TEMPO-oxidized BC was the substrate for nanofibers deposition (BC/PVA-CH_PG composite). In the second approach, TEMPO-oxidized BC was functionalized with PG, and afterward, the PVA-CH layer was electrospun (BC_PG/PVA-CH composite). The double-layer composites obtained were characterized and the nanofibrous layers displayed smooth fibers with average diameters of 139.63 ± 65.52 nm and 140.17 ± 57.04 nm, with and without pigment incorporation, respectively. FTIR-ATR analysis confirmed BC oxidation and revealed increased intensity at specific wavelengths, after pigment incorporation. Moreover, the moderate hydrophilic behavior, as well as the high porosity exhibited by each layer, remained mostly unaffected after PG incorporation. The composites’ mechanical performance and the water vapor transmission rate (WVTR) evaluation indicated the suitability of the materials for certain food packaging solutions, especially for fresh products. Additionally, the red color provided by the bacterial pigment PG on the external surface of a food packaging material is also a desirable effect, to attract the consumers’ attention, creating a multifunctional material. Furthermore, the antimicrobial activity was evaluated and, PVA-CH_PG, and BC_PG layers exhibited the highest antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa. Thus, the fabricated composites can be considered for application in active food packaging, owing to PG antimicrobial potential, to prevent foodborne pathogens (with PG incorporated into the inner layer of the food packaging material, BC/PVA-CH_PG composite), but also to prevent external contamination, by tackling the exterior of food packaging materials (with PG added to the outer layer, BC_PG/PVA-CH composite).
Collapse
Affiliation(s)
- Lúcia F. A. Amorim
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Cláudia Mouro
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
| | - Martijn Riool
- Department of Medical Microbiology and Infection Prevention, Amsterdam UMC, Amsterdam Institute for Infection and Immunity, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Isabel C. Gouveia
- FibEnTech Research Unit, Faculty of Engineering, University of Beira Interior, 6200-001 Covilhã, Portugal; (L.F.A.A.); (C.M.)
- Correspondence: ; Tel.: +351-27-531-9825
| |
Collapse
|
11
|
Isolation, Characterization, and Antibiofilm Activity of Pigments Synthesized by Rhodococcus sp. SC1. Curr Microbiol 2021; 79:15. [PMID: 34905097 DOI: 10.1007/s00284-021-02694-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 10/12/2021] [Indexed: 10/19/2022]
Abstract
Infections from multi-drug resistant bacteria and biofilms constitute a serious problem worldwide. There is a need for new antibacterial and antibiofilm compounds in the fight against infectious diseases. In recent years, pigment-producing microorganisms have drawn a great deal of attention as a promising source for antibacterial and antibiofilm compounds. Here, we report the antibacterial and antibiofilm activity of pigments synthesized by bacteria isolated from soil. This study aimed to perform an evaluation of the antibacterial, antibiofilm, and characteristic of crude pigments from Rhodococcus sp. SC1 isolates. The total pigment extract exhibited antibacterial activity against Gram-positive and Gram-negative reference bacteria with required minimum inhibitory concentration (MIC) values ranging from 64 to 256 µg/ml. Moreover, it reduced biofilm formation of Gram-negative reference bacteria at sub-MIC concentration. For characterization of the pigments, UV-absorbance, thin layer chromatography, fourier transform infrared spectroscopy, and QTOF-LC/MS analyses were performed. The results of this study showed that pigments of Rhodococcus sp. SC1 isolates can be a candidate for medical applications.
Collapse
|
12
|
One-Cell Metabolic Phenotyping and Sequencing of Soil Microbiome by Raman-Activated Gravity-Driven Encapsulation (RAGE). mSystems 2021; 6:e0018121. [PMID: 34042466 PMCID: PMC8269212 DOI: 10.1128/msystems.00181-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Soil harbors arguably the most metabolically and genetically heterogeneous microbiomes on Earth, yet establishing the link between metabolic functions and genome at the precisely one-cell level has been difficult. Here, for mock microbial communities and then for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) platform, which identifies, sorts, and sequences precisely one bacterial cell via its anabolic (incorporating D from heavy water) and physiological (carotenoid-containing) functions. We showed that (i) metabolically active cells from numerically rare soil taxa, such as Corynebacterium spp., Clostridium spp., Moraxella spp., Pantoea spp., and Pseudomonas spp., can be readily identified and sorted based on D2O uptake, and their one-cell genome coverage can reach ∼93% to allow high-quality genome-wide metabolic reconstruction; (ii) similarly, carotenoid-containing cells such as Pantoea spp., Legionella spp., Massilia spp., Pseudomonas spp., and Pedobacter spp. were identified and one-cell genomes were generated for tracing the carotenoid-synthetic pathways; and (iii) carotenoid-producing cells can be either metabolically active or inert, suggesting culture-based approaches can miss many such cells. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at exactly one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems. IMPORTANCE Soil is home to an enormous and complex microbiome that features arguably the highest genomic diversity and metabolic heterogeneity of cells on Earth. Their in situ metabolic activities drive many natural processes of pivotal ecological significance or underlie industrial production of numerous valuable bioactivities. However, pinpointing “who is doing what” in a soil microbiome, which consists of mainly yet-to-be-cultured species, has remained a major challenge. Here, for soil microbiota, we established a Raman-activated gravity-driven single-cell encapsulation and sequencing (RAGE-Seq) method, which identifies, sorts, and sequences at the resolution of precisely one microbial cell via its catabolic and anabolic functions. As a Raman-activated cell sorter (RACS) family member that can establish a metabolism-genome link at one-cell resolution from soil, RAGE-Seq can help to precisely pinpoint “who is doing what” in complex ecosystems.
Collapse
|
13
|
Chatragadda R, Dufossé L. Ecological and Biotechnological Aspects of Pigmented Microbes: A Way Forward in Development of Food and Pharmaceutical Grade Pigments. Microorganisms 2021; 9:637. [PMID: 33803896 PMCID: PMC8003166 DOI: 10.3390/microorganisms9030637] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/04/2021] [Accepted: 03/15/2021] [Indexed: 12/17/2022] Open
Abstract
Microbial pigments play multiple roles in the ecosystem construction, survival, and fitness of all kinds of organisms. Considerably, microbial (bacteria, fungi, yeast, and microalgae) pigments offer a wide array of food, drug, colorants, dyes, and imaging applications. In contrast to the natural pigments from microbes, synthetic colorants are widely used due to high production, high intensity, and low cost. Nevertheless, natural pigments are gaining more demand over synthetic pigments as synthetic pigments have demonstrated side effects on human health. Therefore, research on microbial pigments needs to be extended, explored, and exploited to find potential industrial applications. In this review, the evolutionary aspects, the spatial significance of important pigments, biomedical applications, research gaps, and future perspectives are detailed briefly. The pathogenic nature of some pigmented bacteria is also detailed for awareness and safe handling. In addition, pigments from macro-organisms are also discussed in some sections for comparison with microbes.
Collapse
Affiliation(s)
- Ramesh Chatragadda
- Biological Oceanography Division (BOD), Council of Scientific and Industrial Research-National Institute of Oceanography (CSIR-NIO), Dona Paula 403004, Goa, India
| | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products (CHEMBIOPRO Lab), Ecole Supérieure d’Ingénieurs Réunion Océan Indien (ESIROI), Département Agroalimentaire, Université de La Réunion, F-97744 Saint-Denis, France
| |
Collapse
|
14
|
Sedláček I, Pantůček R, Zeman M, Holochová P, Šedo O, Staňková E, Švec P, Králová S, Vídeňská P, Micenková L, Korpole S, Lal R. Hymenobacter terrestris sp. nov. and Hymenobacter lapidiphilus sp. nov., isolated from regoliths in Antarctica. Int J Syst Evol Microbiol 2021; 70:6364-6372. [PMID: 33599603 DOI: 10.1099/ijsem.0.004540] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A group of four psychrotrophic bacterial strains was isolated on James Ross Island (Antarctica) in 2013. All isolates, originating from different soil samples, were collected from the ice-free northern part of the island. They were rod-shaped, Gram-stain-negative, and produced moderately slimy red-pink pigmented colonies on R2A agar. A polyphasic taxonomic approach based on 16S rRNA gene sequencing, whole-genome sequencing, MALDI-TOF MS, rep-PCR analyses, chemotaxonomic methods and extensive biotyping was used to clarify the taxonomic position of these isolates. Phylogenetic analysis based on 16S rRNA gene sequences showed that the isolates belonged to the genus Hymenobacter. The closest relative was Hymenobacter humicola CCM 8763T, exhibiting 98.3 and 98.9% 16S rRNA pairwise similarity with the reference isolates P5342T and P5252T, respectively. Average nucleotide identity, digital DNA-DNA hybridization and core gene distances calculated from the whole-genome sequencing data confirmed that P5252T and P5342T represent two distinct Hymenobacter species. The menaquinone systems of both strains contained MK-7 as the major respiratory quinone. The predominant polar lipids for both strains were phosphatidylethanolamine and one unidentified glycolipid. The major components in the cellular fatty acid composition were summed feature 3 (C16:1 ω7c/C16:1ω6c), C16:1ω5c, summed feature 4 (anteiso-C17:1 B/iso-C17:1 I), anteiso-C15:0 and iso-C15 : 0 for all isolates. Based on the obtained results, two novel species are proposed, for which the names Hymenobacter terrestris sp. nov. (type strain P5252T=CCM 8765T=LMG 31495T) and Hymenobacter lapidiphilus sp. nov. (type strain P5342T=CCM 8764T=LMG 30613T) are suggested.
Collapse
Affiliation(s)
- Ivo Sedláček
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Roman Pantůček
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Michal Zeman
- Department of Experimental Biology, Section of Genetics and Molecular Biology, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavla Holochová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Ondrej Šedo
- Central European Institute of Technology, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Eva Staňková
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Pavel Švec
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Stanislava Králová
- Department of Experimental Biology, Czech Collection of Microorganisms, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Petra Vídeňská
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Lenka Micenková
- Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Suresh Korpole
- Microbial Type Culture Collection and Gene Bank (MTCC), CSIR - Institute of Microbial Technology, Sector 39A, Chandigarh 160 036, India
| | - Rup Lal
- The Energy and Resources Institute, Lodhi Road, New Delhi - 110003, India
| |
Collapse
|
15
|
Mogadem A, Almamary MA, Mahat NA, Jemon K, Ahmad WA, Ali I. Antioxidant Activity Evaluation of FlexirubinType Pigment from Chryseobacterium artocarpi CECT 8497 and Related Docking Study. Molecules 2021; 26:molecules26040979. [PMID: 33673263 PMCID: PMC7918587 DOI: 10.3390/molecules26040979] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/26/2022] Open
Abstract
The current research is focused on studying the biological efficacy of flexirubin, a pigment extracted from Chryseobacterium artocarpi CECT 8497.Different methods such as DPPH, H2O2, NO•, O2•−, •OH, lipid peroxidation inhibition by FTC and TBA, ferric reducing and ferrous chelating activity were carried out to evaluate the antioxidant activity of flexirubin. Molecular docking was also carried out, seeking the molecular interactions of flexirubin and a standard antioxidant compound with SOD enzyme to figure out the possible flexirubin activity mechanism. The new findings revealed that the highest level of flexirubin exhibited similar antioxidant activity as that of the standard compound according to the H2O2, •OH, O2•−, FTC and TBA methods. On the other hand, flexirubin at the highest level has shown lower antioxidant activity than the positive control according to the DPPH and NO• and even much lower when measured by the FRAP method. Molecular docking showed that the interaction of flexirubin was in the binding cavity of the SOD enzyme and did not affect its metal-binding site. These results revealed that flexirubin has antioxidant properties and can be a useful therapeutic compound in preventing or treating free radical-related diseases.
Collapse
Affiliation(s)
- Abeer Mogadem
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Mohamed Ali Almamary
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
| | - Naji Arafat Mahat
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
| | - Khairunadwa Jemon
- Department of Bioscience, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia;
| | - Wan Azlina Ahmad
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, Johor Bahru 81310 UTM, Johor, Malaysia; (A.M.); (N.A.M.); (W.A.A.)
| | - Imran Ali
- Department of Chemistry, Faculty of Science, Taibah University, Al-Madinah Al-Munawarah 42353, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia, A Central University, New Delhi 11025, India
- Correspondence:
| |
Collapse
|
16
|
Venil CK, Dufossé L, Renuka Devi P. Bacterial Pigments: Sustainable Compounds With Market Potential for Pharma and Food Industry. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.00100] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
17
|
Wang SL, Nguyen VB, Doan CT, Tran TN, Nguyen MT, Nguyen AD. Production and Potential Applications of Bioconversion of Chitin and Protein-Containing Fishery Byproducts into Prodigiosin: A Review. Molecules 2020; 25:E2744. [PMID: 32545769 PMCID: PMC7356639 DOI: 10.3390/molecules25122744] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/03/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
The technology of microbial conversion provides a potential way to exploit compounds of biotechnological potential. The red pigment prodigiosin (PG) and other PG-like pigments from bacteria, majorly from Serratia marcescens, have been reported as bioactive secondary metabolites that can be used in the broad fields of agriculture, fine chemicals, and pharmacy. Increasing PG productivity by investigating the culture conditions especially the inexpensive carbon and nitrogen (C/N) sources has become an important factor for large-scale production. Investigations into the bioactivities and applications of PG and its related compounds have also been given increased attention. To save production cost, chitin and protein-containing fishery byproducts have recently been investigated as the sole C/N source for the production of PG and chitinolytic/proteolytic enzymes. This strategy provides an environmentally-friendly selection using inexpensive C/N sources to produce a high yield of PG together with chitinolytic and proteolytic enzymes by S. marcescens. The review article will provide effective references for production, bioactivity, and application of S. marcescens PG in various fields such as biocontrol agents and potential pharmaceutical drugs.
Collapse
Affiliation(s)
- San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Life Science Development Center, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
| | - Chien Thang Doan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Thi Ngoc Tran
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan; (C.T.D.); (T.N.T.)
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Minh Trung Nguyen
- Department of Science and Technology, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| | - Anh Dzung Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam;
| |
Collapse
|
18
|
Antibacterial Activity of Marine Bacterial Pigments Obtained from Arabian Sea Water Samples. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.1.54] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
19
|
Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufossé L. Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. Microorganisms 2019; 7:microorganisms7070186. [PMID: 31261756 PMCID: PMC6680428 DOI: 10.3390/microorganisms7070186] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/19/2019] [Accepted: 06/27/2019] [Indexed: 01/15/2023] Open
Abstract
Microbial oddities such as versatile pigments are gaining more attention in current research due to their widely perceived applications as natural food colorants, textiles, antimicrobial activities, and cytotoxic activities. This indicates that the future generation will depend on microbial pigments over synthetic colorants for sustainable livelihood. Although several reviews have detailed the comprehensive applications of microbial pigments extensively, knowledge on several aspects of pigmented microbes is apparently missing and not properly reviewed anywhere. Thus, this review has been made to provide overall knowledge on biodiversity, distribution, pathogenicity, and ecological and industrial applications of microbial pigments as well as their challenges and future directions for food, industrial, and biomedical applications. Meticulously, this compendious review treatise on the pigments from bacteria, fungi, yeasts, and microalgae includes reports from the 1970s to 2018. A total of 261 pigment compounds produced by about 500 different microbial species are included, and their bioactive nature is described.
Collapse
Affiliation(s)
- Chatragadda Ramesh
- National Centre for Coastal Research (NCCR), NCCR Field Office, Ministry of Earth Sciences (MoES), Mandapam Camp, TN 623519, India.
- Atal Centre for Ocean Science and Technology for Islands, ESSO-NIOT, Dollygunj, Port Blair, Andaman and Nicobar Islands 744103, India.
| | - Nambali Valsalan Vinithkumar
- Atal Centre for Ocean Science and Technology for Islands, ESSO-NIOT, Dollygunj, Port Blair, Andaman and Nicobar Islands 744103, India
| | - Ramalingam Kirubagaran
- Marine Biotechnology Group, ESSO-National Institute of Ocean Technology (NIOT), Ministry of Earth Sciences (Govt. of India), Chennai, TN 600100, India
| | | | - Laurent Dufossé
- Laboratoire de Chimie des Substances Naturelles et des Sciences des Aliments-LCSNSA EA 2212, Université de La Réunion, ESIROI Agroalimentaire, 15 Avenue René Cassin, CS 92003, F-97744 Saint-Denis Cedex 9, Ile de La Réunion, France.
| |
Collapse
|