1
|
Mardonova G, Shurigin V, Eshboev F, Egamberdieva D. Potential plant benefits of endophytic microorganisms associated with halophyte Glycyrrhiza glabra L. AIMS Microbiol 2024; 10:859-879. [PMID: 39628723 PMCID: PMC11609431 DOI: 10.3934/microbiol.2024037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 09/11/2024] [Indexed: 12/06/2024] Open
Abstract
In this study, bacteria associated with licorice (Glycyrrhiza glabra L.) were characterized through 16S rRNA gene analysis. Profiling of endophytic bacteria isolated from Glycyrrhiza glabra tissues revealed 18 isolates across the following genera: Enterobacter (4), Pantoea (3), Bacillus (2), Paenibacillus (2), Achromobacter (2), Pseudomonas (1), Escherichia (1), Klebsiella (1), Citrobacter (1), and Kosakonia (1). Furthermore, the beneficial features of bacterial isolates for plants were determined. The bacterial isolates showed the capacity to produce siderophores, hydrogen cyanide (HCN), indole-3-acetic acid (IAA), chitinase, protease, glucanase, lipase, and other enzymes. Seven bacterial isolates showed antagonistic activity against F. culmorum, F. solani, and R. solani. According to these results, licorice with antimicrobial properties may serve as a source for the selection of microorganisms that have antagonistic activity against plant fungal pathogens and may be considered potential candidates for the control of plant pathogens. The selected bacterial isolates, P. polymyxa GU1, A. xylosoxidans GU6, P. azotoformans GU7, and P. agglomerans GU18, increased root and shoot growth of licorice and were able to colonize the plant root. They can also serve as an active part of bioinoculants, improving plant growth.
Collapse
Affiliation(s)
- Gulsanam Mardonova
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
| | - Vyacheslav Shurigin
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Key Laboratory of Biodiversity Conservation and Application in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, Xinjiang, China
| | - Farkhod Eshboev
- S. Yu. Yunusov Institute of the Chemistry of Plant Substances, Academy of Sciences of the Republic of Uzbekistan, Tashkent 100170, Uzbekistan
- School of Chemical Engineering, New Uzbekistan University, Movarounnahr Street 1, Mirzo Ulugbek District, Tashkent, 100000, Uzbekistan
| | - Dilfuza Egamberdieva
- Faculty of Biology, National University of Uzbekistan, Tashkent 100174, Uzbekistan
- Institute of Fundamental and Applied Research, National Research University TIIAME, Tashkent 100000, Uzbekistan
| |
Collapse
|
2
|
Wang Y, Zheng J, Xue Y, Yu B. Engineering Pseudomonas putida KT2440 for Dipicolinate Production via the Entner-Doudoroff Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:6500-6508. [PMID: 38470347 DOI: 10.1021/acs.jafc.4c00003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Dipicolinic acid (DPA), a cyclic diacid, has garnered significant interest due to its potential applications in antimicrobial agents, antioxidants, chelating reagents, and polymer precursors. However, its natural bioproduction is limited since DPA is only accumulated in Bacillus and Clostridium species during sporulation. Thus, heterologous production by engineered strains is of paramount importance for developing a sustainable biological route for DPA production. Pseudomonas putida KT2440 has emerged as a promising host for the production of various chemicals thanks to its robustness, metabolic versatility, and genetic tractability. The dominant Entner-Doudoroff (ED) pathway for glucose metabolism in this strain offers an ideal route for DPA production due to the advantage of NADPH generation and the naturally balanced flux between glyceraldehyde-3-phosphate and pyruvate, which are both precursors for DPA synthesis. In this study, DPA production via the ED pathway was in silico designed in P. putida KT2440. The systematically engineered strain produced dipicolinate with a titer of 11.72 g/L from glucose in a 5 L fermentor. This approach not only provides a sustainable green route for DPA production but also expands our understanding of the metabolic potential of the ED pathway in P. putida KT2440.
Collapse
Affiliation(s)
- Yihan Wang
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Jie Zheng
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yubin Xue
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bo Yu
- Department of Industrial Microbiology and Biotechnology, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Shi H, Li W, Zhou Y, Wang J, Shen S. Can we control potato fungal and bacterial diseases? - microbial regulation. Heliyon 2023; 9:e22390. [PMID: 38046151 PMCID: PMC10686857 DOI: 10.1016/j.heliyon.2023.e22390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023] Open
Abstract
The potato plant is one of the main crops in the world. However, relatively little is known about key virulence factors of major fungal and bacterial diseases in potatoes, biocontrol measures to improve activity and stability, and the core driving forces in the control process. Here, we focus on analyzing the mechanisms by which genes, proteins, or (and) metabolites of potato pathogens as key virulence factors. Then, the single strain biocontrol agents, synthetic microbial communities, microbial microcapsule strategies were introduced, and the latter two strategies can improve stability and activity in biocontrol. Meanwhile, summarized the defense mechanisms of biocontrol and their specific issues in practical applications. Furthermore, explore how potato crop management, soil management, and climate effects, as crucial driving forces affect potato biocontrol in the system. Dynamic and systematic research, excavation of biocontrol strain resources, find the causes of regional disease resistance and exploration of biocontrol mechanism will provide promising solutions for biotic stress faced by potato in the future.
Collapse
Affiliation(s)
- Huiqin Shi
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Wei Li
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Yun Zhou
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Jian Wang
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| | - Shuo Shen
- Academy of Agriculture and Forestry Sciences, Qinghai University, Xining, China
- Key Laboratory of Potato Breeding of Qinghai Province, Xining, China
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, China
- Key Laboratory of Qinghai Tibet Plateau Biotechnology, Ministry of Education, Xining, China
- Northwest Potato Engineering Research Center, Ministry of Education, Xining, China
| |
Collapse
|
4
|
Munakata Y, Spina R, Slezack-Deschaumes S, Genestier J, Hehn A, Laurain-Mattar D. Screening of Endophytic Bacteria of Leucojum aestivum 'Gravety Giant' as a Potential Source of Alkaloids and as Antagonist to Some Plant Fungal Pathogens. Microorganisms 2022; 10:microorganisms10102089. [PMID: 36296365 PMCID: PMC9609000 DOI: 10.3390/microorganisms10102089] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 12/04/2022] Open
Abstract
Leucojum aestivum is a medicinal plant belonging to the Amaryllidaceae family well known as a producer of alkaloids such as galanthamine and lycorine. However, the endophytic microbes that colonize different plant tissues without causing any damage have not been reported in this plant. Here, we explored the different endophytic bacterial communities isolated from different surface disinfected tissues of L. aestivum 'Gravety giant' and screened bacterial isolates producing alkaloids and their potential use as biocontrol agent against wheat pathogens. For that purpose, endophytic bacteria were isolated from bulbs, roots and shoots of L. aestivum. After taxonomical characterization, these microorganisms were screened for their ability to produce alkaloids using high-performance thin-layer chromatography (HPTLC) and untargeted liquid chromatography-Mass Spectrometry/Mass Spectrometry (LC-MS/MS) strategies. We isolated 138 bacteria belonging to four phyla and 42 genera, mainly from roots and shoots. The most abundant genera were Rahnella in shoot, Patulibacter in bulb and Bacillus in roots. Among the different bacterial isolates, the methanolic extracts of Luteibacter rhizovicinus (LaBFB3301) and Commamonas denitrificans (LaBFS2103) slightly delayed the growth of F. graminearum colonies in in vitro dual tests against F. graminearum and M. nivale strains with 15.5% and 19.9% inhibition rates, respectively. These isolates are able to produce an indolic alkaloid tryptophol (C10H11NO, [M + H]+ 162.0913). These endophytic bacteria might be investigated to characterize the plant protection effect and the plant growth promotion effect.
Collapse
Affiliation(s)
- Yuka Munakata
- Université de Lorraine—INRAE, LAE, F-54000 Nancy, France
- Université de Lorraine—CNRS, L2CM, F-54000 Nancy, France
| | - Rosella Spina
- Université de Lorraine—INRAE, LAE, F-54000 Nancy, France
- Université de Lorraine—CNRS, L2CM, F-54000 Nancy, France
| | | | | | - Alain Hehn
- Université de Lorraine—INRAE, LAE, F-54000 Nancy, France
| | - Dominique Laurain-Mattar
- Université de Lorraine—INRAE, LAE, F-54000 Nancy, France
- Université de Lorraine—CNRS, L2CM, F-54000 Nancy, France
- Correspondence:
| |
Collapse
|
5
|
Schwardmann LS, Dransfeld AK, Schäffer T, Wendisch VF. Metabolic Engineering of Corynebacterium glutamicum for Sustainable Production of the Aromatic Dicarboxylic Acid Dipicolinic Acid. Microorganisms 2022; 10:microorganisms10040730. [PMID: 35456781 PMCID: PMC9024752 DOI: 10.3390/microorganisms10040730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/25/2022] [Accepted: 03/26/2022] [Indexed: 02/04/2023] Open
Abstract
Dipicolinic acid (DPA) is an aromatic dicarboxylic acid that mediates heat-stability and is easily biodegradable and non-toxic. Currently, the production of DPA is fossil-based, but bioproduction of DPA may help to replace fossil-based plastics as it can be used for the production of polyesters or polyamides. Moreover, it serves as a stabilizer for peroxides or organic materials. The antioxidative, antimicrobial and antifungal effects of DPA make it interesting for pharmaceutical applications. In nature, DPA is essential for sporulation of Bacillus and Clostridium species, and its biosynthesis shares the first three reactions with the L-lysine pathway. Corynebacterium glutamicum is a major host for the fermentative production of amino acids, including the million-ton per year production of L-lysine. This study revealed that DPA reduced the growth rate of C. glutamicum to half-maximal at about 1.6 g·L−1. The first de novo production of DPA by C. glutamicum was established by overexpression of dipicolinate synthase genes from Paenibacillus sonchi genomovar riograndensis SBR5 in a C. glutamicum L-lysine producer strain. Upon systems metabolic engineering, DPA production to 2.5 g·L−1 in shake-flask and 1.5 g·L−1 in fed-batch bioreactor cultivations was shown. Moreover, DPA production from the alternative carbon substrates arabinose, xylose, glycerol, and starch was established. Finally, expression of the codon-harmonized phosphite dehydrogenase gene from P. stutzeri enabled phosphite-dependent non-sterile DPA production.
Collapse
Affiliation(s)
- Lynn S. Schwardmann
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Aron K. Dransfeld
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
| | - Thomas Schäffer
- Multiscale Bioengineering, Technical Faculty and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany;
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (L.S.S.); (A.K.D.)
- Correspondence: ; Tel.: +49-521-106-5611
| |
Collapse
|
6
|
Raimi A, Adeleke R. Bioprospecting of endophytic microorganisms for bioactive compounds of therapeutic importance. Arch Microbiol 2021; 203:1917-1942. [PMID: 33677637 DOI: 10.1007/s00203-021-02256-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 01/09/2023]
Abstract
Presently, several drug discovery investigations on therapeutic management of human health are aimed at bioprospecting for microorganisms, especially endophytic microbes of biotechnological importance. This review investigates the benefits of endophytes, especially in producing bioactive compounds useful in modern medicine by systematically reviewing published data from 12 databases. Only experimental studies investigating either or both bacterial and fungal endophytes and within the scope of this review were selected. The published data from the last 2 decades (2000-2019) revealed diverse endophytes associated with different plants produce a broad spectrum of bioactive compounds with therapeutic benefits. Notably, antibacterial, followed by anticancer and antifungal activities, were mostly reported. Only three studies investigated the anti-plasmodial activity. The variation observed in the synthesis of bioactive compounds amongst endophytes varied with host type, endophyte species, and cultivation medium. Fungal endophytes were more investigated than bacterial endophytes, with both endophytes having species diversity amongst literature. The endophytes were predominantly from medicinal plants and belonged to either Ascomycota (fungi) or Proteobacteria and Firmicutes (bacteria). This review presents excellent prospects of harnessing endophytes and their unique bioactive compounds in developing novel and effective compounds of medicinal importance.
Collapse
Affiliation(s)
- Adekunle Raimi
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, 2520, South Africa.
| |
Collapse
|