1
|
Meng XJ, Wang LQ, Ma BG, Wei XH, Zhou Y, Sun ZX, Li YY. Screening, identification and evaluation of an acidophilic strain of Bacillus velezensis B4-7 for the biocontrol of tobacco bacterial wilt. FRONTIERS IN PLANT SCIENCE 2024; 15:1360173. [PMID: 38751839 PMCID: PMC11094357 DOI: 10.3389/fpls.2024.1360173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024]
Abstract
Tobacco (Nicotiana tabacum L.) bacterial wilt, caused by Ralstonia solanacearum, is indeed a highly destructive plant disease, leading to substantial damage in tobacco production. While biological control is considered an effective measure for managing bacterial wilt, related research in this area has been relatively limited compared to other control methods. In order to discover new potential antagonistic bacteria with high biocontrol efficacy against tobacco bacterial wilt, we conducted an analysis of the microbial composition differences between disease-suppressive and disease-conducive soils using Illumina sequencing. As a result, we successfully isolated six strains from the disease-suppressive soil that exhibited antibacterial activity against Ralstonia solanacearum. Among these strains, B4-7 showed the strongest antibacterial activity, even at acidic conditions with a pH of 4.0. Based on genome analysis using Average Nucleotide Identity (ANI), B4-7 was identified as Bacillus velezensis. In greenhouse and field trials, strain B4-7 significantly reduced the disease index of tobacco bacterial wilt, with control efficiencies reaching 74.03% and 46.88% respectively. Additionally, B4-7 exhibited plant-promoting abilities that led to a 35.27% increase in tobacco production in field conditions. Quantitative real-time (qPCR) analysis demonstrated that strain B4-7 effectively reduced the abundance of R. solanacearum in the rhizosphere. Genome sequencing and Liquid Chromatography-Mass Spectrometry (LC-MS) analysis revealed that strain B4-7 potentially produces various lipopeptide metabolites, such as microlactin, bacillaene, difficidin, bacilysin, and surfactin. Furthermore, B4-7 influenced the structure of the rhizosphere soil microbial community, increasing bacterial abundance and fungal diversity, while also promoting the growth of different beneficial microorganisms. In addition, B4-7 enhanced tobacco's resistance to R. solanacearum by increasing the activities of defense enzymes, including superoxide dismutase (SOD), phenylalanine ammonia-lyase (PAL), peroxidase (POD), catalase (CAT), and polyphenol oxidase (PPO). Collectively, these findings suggest that B. velezensis B4-7 holds significant biocontrol potential and can be considered a promising candidate strain for eco-friendly management of tobacco bacterial wilt.
Collapse
Affiliation(s)
- Xiang-jia Meng
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Lan-qin Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Bai-ge Ma
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Xi-hong Wei
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Yi Zhou
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Zheng-xiang Sun
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- Early Detection and Management of Agricultural and Forestry Pests, Jingzhou, Hubei, China
| | - Yan-yan Li
- Tobacco Research Institute of Hubei Province, Wuhan, Hubei, China
| |
Collapse
|
2
|
Gu M, Yang M, He J, Xia S, Zhang Z, Wang Y, Zheng C, Shen C. A silver lining in cell line authentication: Short tandem repeat analysis of 1373 cases in China from 2010 to 2019. Int J Cancer 2021; 150:502-508. [PMID: 34469590 DOI: 10.1002/ijc.33789] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 12/13/2022]
Abstract
Continuous cell lines are practical models that are widely used in the study of disease mechanisms and particularly cancers. However, the issue of cell line cross-contamination has existed since the 1960s, despite repeated advocation for cell line authentication by many experts. Furthermore, cell line abuse has been underestimated and underreported. The China Center for Type Culture Collection (CCTCC) received 1373 cell samples for authentication from 2010 to 2019, and has found that the quality of cell lines has improved during this time, offering a positive outlook for the future.
Collapse
Affiliation(s)
- Meijia Gu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, Hubei, China
| | - Meimei Yang
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China
| | - Jing He
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China
| | - Sixuan Xia
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China
| | - Zhe Zhang
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China
| | - Yudong Wang
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China
| | - Congyi Zheng
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China.,College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Chao Shen
- China Center for Type Culture Collection, Wuhan University, Wuhan, Hubei, China.,College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|