1
|
Romero-Calle DX, Pedrosa-Silva F, Tomé LMR, Sousa TJ, de Oliveira Santos LTS, de Carvalho Azevedo VA, Brenig B, Benevides RG, Venancio TM, Billington C, Góes-Neto A. Hybrid Genomic Analysis of Salmonella enterica Serovar Enteritidis SE3 Isolated from Polluted Soil in Brazil. Microorganisms 2022; 11:111. [PMID: 36677403 PMCID: PMC9861973 DOI: 10.3390/microorganisms11010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In Brazil, Salmonella enterica serovar Enteritidis is a significant health threat. Salmonella enterica serovar Enteritidis SE3 was isolated from soil at the Subaé River in Santo Amaro, Brazil, a region contaminated with heavy metals and organic waste. Illumina HiSeq and Oxford Nanopore Technologies MinION sequencing were used for de novo hybrid assembly of the Salmonella SE3 genome. This approach yielded 10 contigs with 99.98% identity with S. enterica serovar Enteritidis OLF-SE2-98984-6. Twelve Salmonella pathogenic islands, multiple virulence genes, multiple antimicrobial gene resistance genes, seven phage defense systems, seven prophages and a heavy metal resistance gene were encoded in the genome. Pangenome analysis of the S. enterica clade, including Salmonella SE3, revealed an open pangenome, with a core genome of 2137 genes. Our study showed the effectiveness of a hybrid sequence assembly approach for environmental Salmonella genome analysis using HiSeq and MinION data. This approach enabled the identification of key resistance and virulence genes, and these data are important to inform the control of Salmonella and heavy metal pollution in the Santo Amaro region of Brazil.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thiago J. Sousa
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Thiago M. Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, P.O. Box 29-181, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
2
|
Shemyakina AO, Grechishnikova EG, Novikov AD, Asachenko AF, Kalinina TI, Lavrov KV, Yanenko AS. A Set of Active Promoters with Different Activity Profiles for Superexpressing Rhodococcus Strain. ACS Synth Biol 2021; 10:515-530. [PMID: 33605147 DOI: 10.1021/acssynbio.0c00508] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Rhodococcus bacteria are a promising platform for biodegradation, biocatalysis, and biosynthesis, but the use of rhodococci is hampered by the insufficient number of both platform strains for expression and promoters that are functional and thoroughly studied in these strains. To expand the list of such strains and promoters, we studied the expression capability of the Rhodococcus rhodochrous M33 strain, and the functioning of a set of recombinant promoters in it. We showed that the strain supports superexpression of the target enzyme (nitrile hydratase) using alternative inexpensive feedings-acetate and urea-without growth factor supplementation, thus being a suitable expression platform. The promoter set included Ptuf (elongation factor Tu) and Psod (superoxide dismutase) from Corynebacterium glutamicum ATCC13032, Pcpi (isocitrate lyase) from Rhodococcus erythropolis PR4, and Pnh (nitrile hydratase) from R. rhodochrous M8. Activity levels, regulation possibilities, and growth-phase-dependent activity profiles of these promoters were studied in derivatives of the M33 strain. The activities of the promoters were significantly different (Pcpi < Psod ≪ Ptuf < Pnh), covering 103-fold range, and the most active Pnh and Ptuf produced up to a 30-50% portion of target protein in soluble intracellular proteins. On the basis of the mRNA quantification and amount of target protein, the production level of Pnh was positioned close to the theoretical upper limit of expression in a bacterial cell. A selection method for the laboratory evolution of such active promoters directly in Rhodococcus was also proposed. Concerning regulation, Ptuf could not be regulated (2-fold change), while others were tunable (6-fold for Psod, 79-fold for Pnh, and 44-fold for Pcpi). The promoters possessed four different activity profiles, including three with peak of activity at different growth phases and one with constant activity throughout the growth phases. Ptuf and Pcpi did not change their activity profile under different growth conditions, whereas the Psod and Pnh profiles changed depending on the growth media. The results allow flexible construction of Rhodococcus strains using the studied promoters, and demonstrate a valuable approach for complex characterization of promoters intended for biotechnological strain construction.
Collapse
Affiliation(s)
- Anna O. Shemyakina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Elena G. Grechishnikova
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey D. Novikov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis of Russian Academy of Sciences, Leninsky prospect 29, Moscow, 119991, Russia
| | - Tatyana I. Kalinina
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Konstantin V. Lavrov
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| | - Alexander S. Yanenko
- NRC Kurchatov Institute-Gosniigenetika, Kurchatov Genomic Center, 1st Dorojny pr. 1, Moscow, 117545, Russia
- NRC Kurchatov Institute, Akademika Kurchatova pl. 1, Moscow, 123182, Russia
| |
Collapse
|