1
|
Liu C, Zhang L, Li H, He X, Dong J, Qiu B. Assessing the biodiversity of rhizosphere and endophytic fungi in Knoxia valerianoides under continuous cropping conditions. BMC Microbiol 2024; 24:195. [PMID: 38849736 PMCID: PMC11157913 DOI: 10.1186/s12866-024-03357-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/29/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Rhizosphere and endophytic fungi play important roles in plant health and crop productivity. However, their community dynamics during the continuous cropping of Knoxia valerianoides have rarely been reported. K. valerianoides is a perennial herb of the family Rubiaceae and has been used in herbal medicines for ages. Here, we used high-throughput sequencing technology Illumina MiSeq to study the structural and functional dynamics of the rhizosphere and endophytic fungi of K. valerianoides. RESULTS The findings indicate that continuous planting has led to an increase in the richness and diversity of rhizosphere fungi, while concomitantly resulting in a decrease in the richness and diversity of root fungi. The diversity of endophytic fungal communities in roots was lower than that of the rhizosphere fungi. Ascomycota and Basidiomycota were the dominant phyla detected during the continuous cropping of K. valerianoides. In addition, we found that root rot directly affected the structure and diversity of fungal communities in the rhizosphere and the roots of K. valerianoides. Consequently, both the rhizosphere and endophyte fungal communities of root rot-infected plants showed higher richness than the healthy plants. The relative abundance of Fusarium in two and three years old root rot-infected plants was significantly higher than the control, indicating that continuous planting negatively affected the health of K. valerianoides plants. Decision Curve Analysis showed that soil pH, organic matter (OM), available K, total K, soil sucrase (S_SC), soil catalase (S_CAT), and soil cellulase (S_CL) were significantly related (p < 0.05) to the fungal community dynamics. CONCLUSIONS The diversity of fungal species in the rhizosphere and root of K. valerianoides was reported for the first time. The fungal diversity of rhizosphere soil was higher than that of root endophytic fungi. The fungal diversity of root rot plants was higher than that of healthy plants. Soil pH, OM, available K, total K, S_CAT, S_SC, and S_CL were significantly related to the fungal diversity. The occurrence of root rot had an effect on the community structure and diversity of rhizosphere and root endophytic fungi.
Collapse
Affiliation(s)
- Chunju Liu
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, China
| | - Lei Zhang
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China
| | - Heng Li
- R&D center of Yunnan Yuntianhua Co., Ltd, Kunming, 650228, China
| | - Xiahong He
- Southwest Forestry University, Kunming, 650244, China.
| | - Jiahong Dong
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| | - Bin Qiu
- Institute of Medicinal Plant Cultivation, School of Chinese Materia Medica, Academy of Southern Medicine, Yunnan University of Chinese Medicine, Kunming, 650500, China.
| |
Collapse
|
2
|
Huang L, Fu Y, Liu Y, Chen Y, Wang T, Wang M, Lin X, Feng Y. Global insights into endophytic bacterial communities of terrestrial plants: Exploring the potential applications of endophytic microbiota in sustainable agriculture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172231. [PMID: 38608902 DOI: 10.1016/j.scitotenv.2024.172231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Endophytic microorganisms are indispensable symbionts during plant growth and development and often serve functions such as growth promotion and stress resistance in plants. Therefore, an increasing number of researchers have applied endophytes for multifaceted phytoremediation (e.g., organic pollutants and heavy metals) in recent years. With the availability of next-generation sequencing technologies, an increasing number of studies have shifted the focus from culturable bacteria to total communities. However, information on the composition, structure, and function of bacterial endophytic communities is still not widely synthesized. To explore the general patterns of variation in bacterial communities between plant niches, we reanalyzed data from 1499 samples in 30 individual studies from different continents and provided comprehensive insights. A group of bacterial genera were commonly found in most plant roots and shoots. Our analysis revealed distinct variations in the diversity, composition, structure, and function of endophytic bacterial communities between plant roots and shoots. These variations underscore the sophisticated mechanisms by which plants engage with their endophytic microbiota, optimizing these interactions to bolster growth, health, and resilience against stress. Highlighting the strategic role of endophytic bacteria in promoting sustainable agricultural practices and environmental stewardship, our study not only offers global insights into the endophytic bacterial communities of terrestrial plants but also underscores the untapped potential of these communities as invaluable resources for future research.
Collapse
Affiliation(s)
- Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yingyi Fu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yaru Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yijie Chen
- IDEO Play Lab, CA 91006, United States of America
| | - Tingzhang Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Meixia Wang
- Key Laboratory of Microbial Technology and Bioinformatics of Zhejiang Province, Hangzhou 310012, China
| | - Xianyong Lin
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
3
|
Zhao Y, Sun T, Li Y, Yang Z, Chen J, Wang J, Yu X, Tang X, Xiao H. The host sex contributes to the endophytic bacterial community in Sargassum thunbergii and their receptacles. Front Microbiol 2024; 15:1334918. [PMID: 38559345 PMCID: PMC10978810 DOI: 10.3389/fmicb.2024.1334918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/14/2024] [Indexed: 04/04/2024] Open
Abstract
Endophytic bacteria have a complex coevolutionary relationship with their host macroalgae. Dioecious macroalgae are important producers in marine ecosystems, but there is still a lack of research on how sex influences their endophytic bacteria. In this study, the endophytic bacterial communities in male and female S. thunbergii and their reproductive tissues (receptacles) were compared using culture methods and high-throughput sequencing. The endophytic bacterial communities detected by the two methods were different. Among the 78 isolated strains, the dominant phylum, genus, and species were Bacillota, Alkalihalobacillus, and Alkalihalobacillus algicola, respectively, in the algal bodies, while in the receptacles, they were Bacillota, Vibrio, and Vibrio alginolyticus. However, 24 phyla and 349 genera of endophytic bacteria were identified by high-throughput sequencing, and the dominant phylum and genus were Pseudomonadota and Sva0996_ Marine_ Group, respectively, in both the algal body and the receptacles. The two methods showed similar compositions of endophytic bacterial communities between the samples of different sexes, but the relative abundances of dominant and specific taxa were different. The high-throughput sequencing results showed more clearly that the sex of the host alga had an effect on its endophyte community assembly and a greater effect on the endophytic bacterial community in the receptacles. Moreover, most specific bacteria and predicted functional genes that differed between the samples from the males and females were related to metabolism, suggesting that metabolic differences are the main causes of sex differences in the endophytic bacterial community. Our research is the first to show that host sex contributes to the composition of endophytic bacterial communities in dioecious marine macroalgae. The results enrich the database of endophytic bacteria of dioecious marine macroalgae and pave the way for better understanding the assembly mechanism of the endophytic bacterial community of algae.
Collapse
Affiliation(s)
- Yayun Zhao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Tao Sun
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Qingdao Branch CCCC Water Transportation Consultants Co.,LTD, Qingdao, China
| | - Yang Li
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Shandong Marine Forecast and Hazard Mitigation Service, Qingdao, China
| | - Zhibo Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jun Chen
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xinlong Yu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xuexi Tang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Hui Xiao
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
4
|
Xu Y, Zhu M, Feng Y, Xu H. Panax notoginseng-microbiota interactions: From plant cultivation to medicinal application. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154978. [PMID: 37549538 DOI: 10.1016/j.phymed.2023.154978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/25/2023] [Accepted: 07/15/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Microbiomes and their host plants are closely linked with each other; for example, the microbiome affects plant growth, fitness, nutrient uptake, stress tolerance and pathogen resistance, whereas the host plant supports the photosynthetically carbon-rich nutrition of the microbiome. The importance of the microbiome in plant‒soil ecosystems is unquestioned and has expanded to influence the medicinal application of some herbal plants via the gut microbiota. PURPOSE Herbal plant-microbiome interactions may provide novel knowledge to enhance the robustness of herbal plant crop performance and medicinal applications, which requires a systematic review and preceding discussion. STUDY DESIGN AND METHODS The interactions between Panax notoginseng and microorganisms (from soil to host) were reviewed from the literature. The terms "Panax notoginseng" and "microbiota" were used in combination with the keywords "microbiota/microbes", "bacteria/bacterium" or "fungi/fungus" or "endophyte", as well as our targeted bioactive phytochemicals, including saponins and ginsenosides. RESULT Our study focuses on the famous medicinal herb Panax notoginseng F. H. Chen and proposes that the microbiota is a crucial participant not only in the cultivation of this herbal plant but also in its medicinal application. We also summarize and discuss how these plant‒microbe co-associations shape the assembly of plant-related microbiomes and produce bioactive phytochemicals, as well as influence beneficial herbal traits, such as herbal plant health and pharmacology. In addition, we also highlight future directions. CONCLUSION The rhizosphere and endophytic microbiome of Panax notoginseng are indirectly or directly involved in plant health, biomass production, and the synthesis/biotransformation of plant secondary metabolites. Harnessing the microbiome to improve the quality of traditional Chinese medicine and improve the value of medicinal plants for human health is highly promising.
Collapse
Affiliation(s)
- Yu Xu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mengjie Zhu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yibin Feng
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong.
| | - Hongxi Xu
- Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, PR China.
| |
Collapse
|
5
|
Wang B, Lin Y, Yu W, Xia Q, Ali A, Wei F, Dai C, Zhang J, Cai Z, Zhao J. The loss of microbial autotoxin degradation functions is associated with the decline of beneficial bacterial agents induced by phenolic acids. Microbiol Spectr 2023; 11:e0338022. [PMID: 37698393 PMCID: PMC10581185 DOI: 10.1128/spectrum.03380-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 07/07/2023] [Indexed: 09/13/2023] Open
Abstract
Continuous cultivation of medicinal plants can disrupt the rhizosphere's microbial community. There is still a need to know about the beneficial bacterial community, their putative drivers, and the potential functions they may have. This study used different growth years of Sanqi ginseng (Panax notoginseng) with root rot to look at the beneficial microbial community structure, the function of microbial carbon source utilization, and the function of rhizosphere soil metabolism. The beneficial bacterial community changed and the relative abundance of beneficial agents was suppressed significantly with the successive Sanqi ginseng plantings. The carbon source utilization capacity and diversity increased significantly, whereas three autotoxin degradation-related pathways (biosynthesis of other secondary metabolites, metabolism of terpenoids and polyketides, and xenobiotics biodegradation and metabolism) were downregulated considerably with planting year extended. The changes in the beneficial agents were driven by the shifts in phenolic acid profiles, and the decline of beneficial microbes led to the loss of microbial autotoxin degradation functions. Overall, these results provide insight into beneficial microbes, microbial functions, phenolic acids, and their interactions, and these findings are essential for maintaining healthy and sustainable cultivation of Sanqi ginseng. IMPORTANCE Sanqi ginseng is a valuable perennial Chinese herb with various benefits for human health. However, continuous cultivation causes a high incidence of root rot disease, which leads to decreased yield and serious economic losses and ultimately impedes the sustainable development of Chinese medicine production. The significance of this study is to reveal the pattern of changes in beneficial bacteria and their related functions in root rot diseased rhizosphere with the successive planting years of Sanqi ginseng. This study found that the decline of beneficial bacterial agents mediated by phenolic acid profiles appears to be associated with the loss of microbial autotoxin degradation functions. This result may have new implications for deciphering the causes of Sanqi ginseng's continuous cropping obstacles.
Collapse
Affiliation(s)
- Baoying Wang
- School of Geography, Nanjing Normal University, Nanjing, China
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Yulan Lin
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Wenhao Yu
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Qing Xia
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Ahmad Ali
- School of Geography, Nanjing Normal University, Nanjing, China
| | - Fugang Wei
- Miaoxiang Sanqi Technology Co., Ltd., Wenshan, China
| | - Chuanchao Dai
- College of Life Sciences, Nanjing Normal University, Nanjing, China
| | - Jinbo Zhang
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
| | - Zucong Cai
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing, China
- Jiangsu Engineering Research Center for Soil Utilization & Sustainable Agriculture, Nanjing, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing, China
| |
Collapse
|
6
|
Ayilara MS, Adeleke BS, Babalola OO. Bioprospecting and Challenges of Plant Microbiome Research for Sustainable Agriculture, a Review on Soybean Endophytic Bacteria. MICROBIAL ECOLOGY 2023; 85:1113-1135. [PMID: 36319743 PMCID: PMC10156819 DOI: 10.1007/s00248-022-02136-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 10/24/2022] [Indexed: 05/04/2023]
Abstract
This review evaluates oilseed crop soybean endophytic bacteria, their prospects, and challenges for sustainable agriculture. Soybean is one of the most important oilseed crops with about 20-25% protein content and 20% edible oil production. The ability of soybean root-associated microbes to restore soil nutrients enhances crop yield. Naturally, the soybean root endosphere harbors root nodule bacteria, and endophytic bacteria, which help increase the nitrogen pool and reclamation of another nutrient loss in the soil for plant nutrition. Endophytic bacteria can sustain plant growth and health by exhibiting antibiosis against phytopathogens, production of enzymes, phytohormone biosynthesis, organic acids, and secondary metabolite secretions. Considerable effort in the agricultural industry is focused on multifunctional concepts and bioprospecting on the use of bioinput from endophytic microbes to ensure a stable ecosystem. Bioprospecting in the case of this review is a systemic overview of the biorational approach to harness beneficial plant-associated microbes to ensure food security in the future. Progress in this endeavor is limited by available techniques. The use of molecular techniques in unraveling the functions of soybean endophytic bacteria can explore their use in integrated organic farming. Our review brings to light the endophytic microbial dynamics of soybeans and current status of plant microbiome research for sustainable agriculture.
Collapse
Affiliation(s)
- Modupe Stella Ayilara
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Bartholomew Saanu Adeleke
- Department of Biological Sciences, Microbiology Unit, Faculty of Science, Olusegun Agagu University of Science and Technology, PMB 353, Okitipupa, Nigeria
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa.
| |
Collapse
|
7
|
Cheng X, Bi LW, Li SN, Lu YJ, Wang J, Xu SC, Gu Y, Zhao ZD, Chen YX. Succession of endophytic bacterial community and its contribution to cinnamon oil production during cinnamon shade-drying process. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100094. [PMID: 35415681 PMCID: PMC8991592 DOI: 10.1016/j.fochms.2022.100094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 11/20/2022]
Abstract
Cinnamon oil is a blend of secondary metabolites and is widely used as spice. Endophytic bacteria are always related to the secondary metabolites production. However, the potential of endophytic bacteria communities for cinnamon oil production during cinnamon shade-drying process is still not clear. In this study, we investigated the composition and metabolic function of endophytic bacterial community during 80-day shade-drying process. The temporal dynamics of essential oil content and its dominant constituents were analyzed. The succession of endophytic bacterial community from d0 to d80 was identified. The influence of endophytic bacterial community evolution on cinnamon oil is significant positive. Predictive functional analysis indicated that shade-drying process was rich in Saccharopolyspora that produce enzymes for the conversion of phenylalanine to cinnamaldehyde. These findings enhance our understanding of the functional bacterial genera and functional genes involved in the production of cinnamon oil during cinnamon shade-drying process.
Collapse
Affiliation(s)
- Xian Cheng
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Liang-Wu Bi
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Sheng-Nan Li
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Yan-Ju Lu
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Jing Wang
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Shi-Chao Xu
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Yan Gu
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Zhen-Dong Zhao
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Yu-Xiang Chen
- Institute of Chemical Industry of Forest Products, CAF, China
- National Engineering Lab. for Biomass Chemical Utilization, China
- Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, China
- Key Lab. of Biomass Energy and Material, Jiangsu Province, China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| |
Collapse
|
8
|
Su DF, Shen QQ, Yang JY, Li ZY, Xiao W, Wang YX, Ding ZG, Cui XL. Comparison of the Bulk and Rhizosphere Soil Prokaryotic Communities Between Wild and Reintroduced Manglietiastrum sinicum Plants, a Threatened Species with Extremely Small Populations. Curr Microbiol 2021; 78:3877-3890. [PMID: 34510225 DOI: 10.1007/s00284-021-02653-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 09/02/2021] [Indexed: 11/30/2022]
Abstract
Huagaimu (Manglietiastrum sinicum) trees are critically endangered species and classified as a plant species with extremely small populations in China. Rhizospheres and bulk soils prokaryotic communities play an important role to protect and promote plants health and growth. However, the compositions and structures of prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils are still poorly understood. In the present study, prokaryotic communities in wild and reintroduced M. sinicum rhizospheres and bulk soils were compared using high-throughput sequencing. Thirty-two phyla, 76 classes, 193 orders, 296 families, and 470 genera of prokaryotes were obtained. Proteobacteria and Acidobacteria were the two most abundant phyla in all soil samples. The compositions and structures of prokaryotic communities were overall similar, and the abundance of some taxa varied significantly among soil samples. Soil prokaryotic communities were significantly affected by soil pH, total nitrogen, total phosphorus, and total potassium. Eleven of predicted functions were significantly different among the four soil groups. This study provides for the first insights into the compositions, structures, and potential functions of prokaryotic communities associated with wild and reintroduced M. sinicum rhizospheres and bulk soils, and providing a foundation for future research to help protect this endangered species.
Collapse
Affiliation(s)
- Dai-Fa Su
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Qing-Qing Shen
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,School of Sanqi Medicine, Wenshan University, Wenshan, 663099, Yunnan, People's Republic of China
| | - Jun-Yu Yang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhi-Ying Li
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Wei Xiao
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Yong-Xia Wang
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Zhang-Gui Ding
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China
| | - Xiao-Long Cui
- School of Life Sciences, Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China. .,State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, Yunnan, People's Republic of China.
| |
Collapse
|