1
|
Chang C, Gu Z, Du L, Guo J, Yang Y, Wu Z. Effects of L-β-Galactoglucan Supplementation on Growth Performance, Palatability, and Intestinal Microbiota in Adult Beagle Dogs. Metabolites 2025; 15:160. [PMID: 40137125 PMCID: PMC11944019 DOI: 10.3390/metabo15030160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/07/2025] [Accepted: 02/19/2025] [Indexed: 03/27/2025] Open
Abstract
Background: This study was conducted to investigate the effects of different levels of L-β-galactoglucan on growth performance, palatability, and health condition of dogs. Methods: A total of 32 healthy beagle dogs (2.0 ± 0.5 yr; 13.2 ± 2.1 kg) were randomly assigned into four treatment groups, with 8 dogs in each group. The dogs were fed basal diets supplemented with 0 (control), 0.25, 0.5, or 1% L-β-galactoglucan. Results: The results showed that the feed intake ratio of the dogs in the Low_Gal (0.25%) group was significantly higher (p < 0.05) as compared with the control (Con) group. The low-density lipoprotein cholesterol (LDL-C) levels of the Mid_Gal (0.5%) group showed a trend toward lower levels as compared with the control (Con) group (p = 0.069). Compared with the control (Con) group, the alpha diversity of the bacterial flora of the Shannon index of the Mid_Gal (0.5%) group was significantly higher (p < 0.05). The Simpson index was significantly reduced (p < 0.05), and a PCoA indicated a significant change in the gut microbiota structure among the four groups (p < 0.05). The relative abundance of Blautia and Peptoclostridium in the Low_Gal (0.25%) group was significantly higher as compared with the control (Con) group (p < 0.05). Conclusions: These results indicated that L-β-galactoglucan exhibited a positive effect on improving the palatability and gut microbiota of dogs.
Collapse
Affiliation(s)
- Chenghe Chang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Zifeng Gu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Lingling Du
- Chengdu Sydix Biotech Co., Ltd., Chengdu 610000, China;
| | - Jiantao Guo
- Beijing Shanchongshuifu Technology Development Co., Beijing 100084, China;
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (C.C.); (Z.G.); (Z.W.)
| |
Collapse
|
2
|
Ahmad W, Nasir A, Prakash S, Hayat A, Rehman MU, Khaliq S, Akhtar K, Anwar MA, Munawar N. In Vitro and In Vivo Interventions Reveal the Health Benefits of Levan-Type Exopolysaccharide Produced by a Fish Gut Isolate Lactobacillus reuteri FW2. Life (Basel) 2025; 15:89. [PMID: 39860029 PMCID: PMC11767011 DOI: 10.3390/life15010089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Microorganisms synthesize diverse types of exopolysaccharides (EPSs). EPSs with varying structural and physical properties can demonstrate unique health benefits, which allow for their tailored applications as functional foods such as prebiotics. Levan, a fructose-based EPS, is gaining considerable attention as an effective prebiotic to support the growth of beneficial gut bacteria. Consequently, this enhances digestive health, boosts the immune system, and reduces the risk of chronic diseases. Unfortunately, limited studies are available on levan-type EPSs to demonstrate their role as prebiotics. Therefore, in this study, we conducted in vitro and in vivo experiments, concerning intestinal cell integrity and metabolic syndrome, to assess the therapeutic potential of levan derived from Lactobacillus reuteri FW2. The in vitro experimental results revealed that levan improved the survival of impaired HT-29 epithelial cells of the intestine and also exerted antioxidant effects. In the in vivo experiments, mice fed with levan-supplemented feed exhibited low body weight gain, blood glucose, and serum cholesterol levels compared to the control group. These findings highlight the biotherapeutic potential of L. reuteri FW2-derived levan for improving metabolic syndrome and its associated aspects. It also signifies the need for a further detailed investigation based on clinical trials to include levan in dietary supplements for improved health and well-being.
Collapse
Affiliation(s)
- Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (A.N.); (S.K.); (K.A.)
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan; (A.H.); (M.u.R.)
| | - Anam Nasir
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (A.N.); (S.K.); (K.A.)
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Azam Hayat
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan; (A.H.); (M.u.R.)
| | - Mujaddad ur Rehman
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad 22500, Pakistan; (A.H.); (M.u.R.)
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (A.N.); (S.K.); (K.A.)
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (A.N.); (S.K.); (K.A.)
| | - Munir Ahmad Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (A.N.); (S.K.); (K.A.)
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| |
Collapse
|
3
|
Mekonnen YT, Savini F, Indio V, Seguino A, Giacometti F, Serraino A, Candela M, De Cesare A. Systematic review on microbiome-related nutritional interventions interfering with the colonization of foodborne pathogens in broiler gut to prevent contamination of poultry meat. Poult Sci 2024; 103:103607. [PMID: 38493536 PMCID: PMC10959702 DOI: 10.1016/j.psj.2024.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/19/2024] Open
Abstract
This systematic review aimed to compile the available body of knowledge about microbiome-related nutritional interventions contributing to improve the chicken health and having an impact on the reduction of colonization by foodborne pathogens in the gut. Original research articles published between 2012 and 2022 were systematically searched in Scopus and PubMed. A total of 1,948 articles were retrieved and 140 fulfilled the inclusion criteria. Overall, 73 papers described 99 interventions against colonization by Escherichia coli and related organisms; 10 papers described 15 interventions against Campylobacter spp.; 36 papers described 54 interventions against Salmonella; 40 papers described 54 interventions against Clostridium perfringens. A total of 197 microbiome-related interventions were identified as effective against one or more of the listed pathogens and included probiotics (n = 80), prebiotics (n = 23), phytobiotics (n = 25), synbiotics (n = 12), organic acids (n = 12), enzymes (n = 4), essential oils (n = 14) and combination of these (n = 27). The identified interventions were mostly administered in the feed (173/197) or through oral gavage (11/197), in the drinking water (7/197), in ovo (2/197), intra amniotic (2/197), in fresh or reused litter (1/197) or both in the feed and water (1/197). The interventions enhanced the beneficial microbial communities in the broiler gut as Lactic acid bacteria, mostly Lactobacillus spp., or modulated multiple microbial populations. The mechanisms promoting the fighting against colonization by foodborne pathogens included competitive exclusion, production of short chain fatty acids, decrease of gut pH, restoration of the microbiome after dysbiosis events, promotion of a more stable microbial ecology, expression of genes improving the integrity of intestinal mucosa, enhancing of mucin production and improvement of host immune response. All the studies extracted from the literature described in vivo trials but performed on a limited number of animals under experimental settings. Moreover, they detailed the effect of the intervention on the chicken gut without details on further impact on poultry meat safety.
Collapse
Affiliation(s)
- Yitagele Terefe Mekonnen
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Savini
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Valentina Indio
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy.
| | - Alessandro Seguino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Federica Giacometti
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Andrea Serraino
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| | - Marco Candela
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Alessandra De Cesare
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano dell'Emilia, Bologna 40064, Italy
| |
Collapse
|
4
|
Yang S, Xu X, Peng Q, Ma L, Qiao Y, Shi B. Exopolysaccharides from lactic acid bacteria, as an alternative to antibiotics, on regulation of intestinal health and the immune system. ANIMAL NUTRITION 2023; 13:78-89. [PMID: 37025257 PMCID: PMC10070398 DOI: 10.1016/j.aninu.2023.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/07/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Over-use or misuse of antibiotics in livestock and poultry production contributes to the rising threat of antibiotic resistance in animals and has negative ecological effects. Exopolysaccharides from lactic acid bacteria (LAB-EPS) are a class of biological macromolecules which are secreted by lactic acid bacteria to the outside of the cell wall during their growth and metabolism. Numerous studies demonstrated that LAB-EPS have anti-inflammatory and antimicrobial activities and are able to regulate intestinal health and the immune system in livestock. They are biodegradable, nontoxic and bio-compatible, which are considered as ideal alternatives to antibiotics. This review aims to discuss and summarize recent research findings of LAB-EPS on regulation of intestinal health and the immune system in animals, and thus provide scientific justification for commercial applications of LAB-EPS in livestock.
Collapse
|
5
|
Nasir A, Ahmad W, Sattar F, Ashfaq I, Lindemann SR, Chen MH, Van den Ende W, Ӧner ET, Kirtel O, Khaliq S, Ghauri MA, Anwar MA. Production of a high molecular weight levan by Bacillus paralicheniformis, an industrially and agriculturally important isolate from the buffalo grass rhizosphere. Antonie Van Leeuwenhoek 2022; 115:1101-1112. [PMID: 35840814 DOI: 10.1007/s10482-022-01760-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022]
Abstract
A new exopolysaccharide (EPS) producing Gram-positive bacterium was isolated from the rhizosphere of Bouteloua dactyloides (buffalo grass) and its EPS product was structurally characterized. The isolate, designated as LB1-1A, was identified as Bacillus paralicheniformis based on 16S rRNA gene sequence and phylogenetic tree analysis. The EPS produced by LB1-1A was identified as a levan, having β(2 → 6) linked backbone with β(2 → 1) linkages at the branch points (4.66%). The isolate LB1-1A yielded large amount (~ 42 g/l) of levan having high weight average molecular weight (Mw) of 5.517 × 107 Da. The relatively low degree of branching and high molecular weight of this levan makes B. paralicheniformis LB1-1A a promising candidate for industrial applications.
Collapse
Affiliation(s)
- Anam Nasir
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
- Department of Microbiology, Abbottabad University of Science and Technology, Havelian, Abbottabad, Pakistan
| | - Fazal Sattar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Iram Ashfaq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Stephen R Lindemann
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
| | - Ming-Hsu Chen
- Department of Food Science, Purdue University, 745 Agriculture Mall Drive, West Lafayette, IN, 47907, USA
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Leuven, Belgium
| | - Ebru Toksoy Ӧner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Onur Kirtel
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Göztepe Campus, Istanbul, Turkey
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Muhammad A Ghauri
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan
| | - Munir A Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Punjab, 38000, Faisalabad, Pakistan.
| |
Collapse
|
6
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022; 10:microorganisms10050904. [PMID: 35630349 PMCID: PMC9147854 DOI: 10.3390/microorganisms10050904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
Affiliation(s)
- Waqar Ahmad
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Shazia Khaliq
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Nasrin Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Jamilah El Arab
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
| | - Kalsoom Akhtar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University, 3775 University Street, Montreal, QC H3A 2B4, Canada;
| | - Munir A. Anwar
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering College, Pakistan Institute of Engineering and Applied Sciences (NIBGE-C, PIEAS), Faisalabad 38000, Pakistan; (W.A.); (S.K.); (N.A.); (K.A.)
- Correspondence: (M.A.A.); (N.M.)
| | - Nayla Munawar
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates;
- Correspondence: (M.A.A.); (N.M.)
| |
Collapse
|
7
|
Ahmad W, Khaliq S, Akhtar N, El Arab J, Akhtar K, Prakash S, Anwar MA, Munawar N. Whole Genome Sequence Analysis of a Novel Apilactobacillus Species from Giant Honeybee (Apis dorsata) Gut Reveals Occurrence of Genetic Elements Coding Prebiotic and Probiotic Traits. Microorganisms 2022. [DOI: https://doi.org/10.3390/microorganisms10050904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022] Open
Abstract
Apilactobacillus spp. are classified as obligate fructophilic lactic acid bacteria (FLAB) that inhabit fructose-rich niches such as honeybee gut. Lactic acid bacteria are an important component of the gut microbiome and play a crucial role in maintaining gut health. In this study, a new FLAB strain HBW1, capable of producing glucan-type exopolysaccharide, was isolated from giant honeybee (Apis dorsata) gut and subjected to whole genome sequencing (WHS) to determine its health-beneficial traits. The genome size of the isolate was 1.49 Mb with a GC content of 37.2%. For species level identity, 16S rDNA sequence similarity, genome to genome distance calculator (dDDH), and average nucleotide identity (ANI) values were calculated. Phylogenetic analysis showed that the isolate HBW1 belongs to the Apilactobacillus genus. The dDDH and ANI values in comparison with closely clustered Apilactobacillus kunkeei species were 52% and 93.10%, respectively. Based on these values, we concluded that HBW1 is a novel species of Apilactobacillus, and we propose the name Apilactobacillus waqarii HBW1 for it. Further, WHS data mining of HBW1 revealed that it harbors two glucosyltransferase genes for prebiotic glucan-type exopolysaccharide synthesis. Moreover, chaperon (clp) and methionine sulfoxide reductase (msrA, msrB, and msrC) genes as well as nutritional marker genes for folic acid (folD) and riboflavin biosynthesis (rib operon), important for conferring probiotic properties, were also detected. Occurrence of these genetic traits make HBW1 an excellent candidate for application to improve gut function.
Collapse
|
8
|
Production of bimodal molecular weight levan by a Lactobacillus reuteri isolate from fish gut. Folia Microbiol (Praha) 2021; 67:21-31. [PMID: 34453701 DOI: 10.1007/s12223-021-00913-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 08/12/2021] [Indexed: 10/20/2022]
Abstract
An exopolysaccharide (EPS) synthesizing potentially probiotic Gram-positive bacterial strain was isolated from fish (Tor putitora) gut, and its EPS was structurally characterized. The isolate, designated as FW2, was identified as Lactobacillus reuteri through 16S rRNA gene sequencing and phylogenetic analysis. This isolate produces fructan-type EPS using sucrose as a substrate. Based on 13C-NMR spectroscopy, methylation analysis and monosaccharide composition, the EPS was identified as a linear levan polymer with fructose as main constituent linked via β(2 → 6) linkages. Based on molecular weight (MW) distribution, two groups of levan were found to be produced by the isolate FW2: one with high MW (4.6 × 106 Da) and the other having much lower MW (1.2 × 104 Da). The isolate yielded about 14 g/L levan under optimized culturing parameters including aeration conditions, pH, temperature and substrate concentration. The obtained bimodal molecular weight linear levan is the first of its type to be synthesized by a L. reuteri isolate from fish gut. Bimodal molecular weight prebiotic levan together with the probiotic potential of the producing strain would provide a new promising synbiotic combination for use in aqua culture.
Collapse
|
9
|
The Immunomodulatory Properties of β-2,6 Fructans: A Comprehensive Review. Nutrients 2021; 13:nu13041309. [PMID: 33921025 PMCID: PMC8071392 DOI: 10.3390/nu13041309] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Polysaccharides such as β-2,1-linked fructans including inulin or fructose oligosaccharides are well-known prebiotics with recognised immunomodulatory properties. In recent years, other fructan types covering β-2,6-linked fructans, particularly microbial levans, have gained increasing interest in the field. β-2,6-linked fructans of different degrees of polymerisation can be synthesised by plants or microbes including those that reside in the gastrointestinal tract. Accumulating evidence suggests a role for these β-2,6 fructans in modulating immune function. Here, we provide an overview of the sources and structures of β-2,6 fructans from plants and microbes and describe their ability to modulate immune function in vitro and in vivo along with the suggested mechanisms underpinning their immunomodulatory properties. Further, we discuss the limitations and perspectives pertinent to current studies and the potential applications of β-2,6 fructans including in gut health.
Collapse
|