1
|
Castelli M, Petroni G. An Evolutionary-Focused Review of the Holosporales (Alphaproteobacteria): Diversity, Host Interactions, and Taxonomic Re-ranking as Holosporineae Subord. Nov. MICROBIAL ECOLOGY 2025; 88:15. [PMID: 40085262 PMCID: PMC11909080 DOI: 10.1007/s00248-025-02509-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/03/2025] [Indexed: 03/16/2025]
Abstract
The order Holosporales is a broad and ancient lineage of bacteria obligatorily associated with eukaryotic hosts, mostly protists. Significantly, this is similar to other evolutionary distinct bacterial lineages (e.g. Rickettsiales and Chlamydiae). Here, we provide a detailed and comprehensive account on the current knowledge on the Holosporales. First, acknowledging the up-to-date phylogenetic reconstructions and recent nomenclatural proposals, we reevaluate their taxonomy, thus re-ranking them as a suborder, i.e. Holosporineae, within the order Rhodospirillales. Then, we examine the phylogenetic diversity of the Holosporineae, presenting the 20 described genera and many yet undescribed sub-lineages, as well as the variety of the respective environments of provenance and hosts, which belong to several different eukaryotic supergroups. Noteworthy representatives of the Holosporineae are the infectious intranuclear Holospora, the host manipulator 'Caedimonas', and the farmed shrimp pathogen 'Candidatus Hepatobacter'. Next, we put these bacteria in the broad context of the whole Holosporineae, by comparing with the available data on the least studied representatives, including genome sequences. Accordingly, we reason on the most probable evolutionary trajectories for host interactions, host specificity, and emergence of potential pathogens in aquaculture and possibly humans, as well as on future research directions to investigate those many open points on the Holosporineae.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
| | | |
Collapse
|
2
|
Long H, Johri P, Gout JF, Ni J, Hao Y, Licknack T, Wang Y, Pan J, Jiménez-Marín B, Lynch M. Paramecium Genetics, Genomics, and Evolution. Annu Rev Genet 2023; 57:391-410. [PMID: 38012024 PMCID: PMC11334263 DOI: 10.1146/annurev-genet-071819-104035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The ciliate genus Paramecium served as one of the first model systems in microbial eukaryotic genetics, contributing much to the early understanding of phenomena as diverse as genome rearrangement, cryptic speciation, cytoplasmic inheritance, and endosymbiosis, as well as more recently to the evolution of mating types, introns, and roles of small RNAs in DNA processing. Substantial progress has recently been made in the area of comparative and population genomics. Paramecium species combine some of the lowest known mutation rates with some of the largest known effective populations, along with likely very high recombination rates, thereby harboring a population-genetic environment that promotes an exceptionally efficient capacity for selection. As a consequence, the genomes are extraordinarily streamlined, with very small intergenic regions combined with small numbers of tiny introns. The subject of the bulk of Paramecium research, the ancient Paramecium aurelia species complex, is descended from two whole-genome duplication events that retain high degrees of synteny, thereby providing an exceptional platform for studying the fates of duplicate genes. Despite having a common ancestor dating to several hundred million years ago, the known descendant species are morphologically indistinguishable, raising significant questions about the common view that gene duplications lead to the origins of evolutionary novelties.
Collapse
Affiliation(s)
- Hongan Long
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao, Shandong Province, China
| | - Parul Johri
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jean-Francois Gout
- Department of Biological Sciences, Mississippi State University, Starkville, Mississippi, USA
| | - Jiahao Ni
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Yue Hao
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, Arizona, USA
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Timothy Licknack
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Yaohai Wang
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Jiao Pan
- Institute of Evolution and Marine Biodiversity, KLMME, Ocean University of China, Qingdao, Shandong Province, China;
| | - Berenice Jiménez-Marín
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| | - Michael Lynch
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, Arizona, USA;
| |
Collapse
|
3
|
Fokin SI, Serra V. Bacterial Symbiosis in Ciliates (Alveolata, Ciliophora): Roads Traveled and Those Still to be Taken. J Eukaryot Microbiol 2022; 69:e12886. [PMID: 35006645 PMCID: PMC9539572 DOI: 10.1111/jeu.12886] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/05/2022] [Accepted: 01/06/2022] [Indexed: 11/30/2022]
Abstract
The diversity of prokaryotic symbionts in Ciliophora and other protists is fascinatingly rich; they may even include some potentially pathogenic bacteria. In this review, we summarize currently available data on biodiversity and some morphological and biological peculiarities of prokaryotic symbionts mainly within the genera Paramecium and Euplotes. Another direction of ciliate symbiology, neglected for a long time and now re‐discovered, is the study of epibionts of ciliates. This promises a variety of interesting outcomes. Last, but not least, we stress the new technologies, such as next generation sequencing and the use of genomics data, which all can clarify many new aspects of relevance. For this reason, a brief overview of achievements in genomic studies on ciliate's symbionts is provided. Summing up the results of numerous scientific contributions, we systematically update current knowledge and outline the prospects as to how symbiology of Ciliophora may develop in the near future.
Collapse
Affiliation(s)
- Sergei I Fokin
- University of Pisa, Pisa, Italy.,St. Petersburg State University, St. Petersburg, Russia
| | | |
Collapse
|