1
|
Lei L, Zhu T, Cui TJ, Liu Y, Hocher JG, Chen X, Zhang XM, Cai KW, Deng ZY, Wang XH, Tang C, Lin L, Reichetzeder C, Zheng ZH, Hocher B, Lu YP. Renoprotective effects of empagliflozin in high-fat diet-induced obesity-related glomerulopathy by regulation of gut-kidney axis. Am J Physiol Cell Physiol 2024; 327:C994-C1011. [PMID: 39183639 PMCID: PMC11481992 DOI: 10.1152/ajpcell.00367.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
The increasing prevalence of obesity-related glomerulopathy (ORG) poses a significant threat to public health. Sodium-glucose cotransporter-2 (SGLT2) inhibitors effectively reduce body weight and total fat mass in individuals with obesity and halt the progression of ORG. However, the underlying mechanisms of their reno-protective effects in ORG remain unclear. We established a high-fat diet-induced ORG model using C57BL/6J mice, which were divided into three groups: normal chow diet (NCD group), high-fat diet (HFD) mice treated with placebo (ORG group), and HFD mice treated with empagliflozin (EMPA group). We conducted 16S ribosomal RNA gene sequencing of feces and analyzed metabolites from kidney, feces, liver, and serum samples. ORG mice showed increased urinary albumin creatinine ratio, cholesterol, triglyceride levels, and glomerular diameter compared with NCD mice (all P < 0.05). EMPA treatment significantly alleviated these parameters (all P < 0.05). Multitissue metabolomics analysis revealed lipid metabolic reprogramming in ORG mice, which was significantly altered by EMPA treatment. MetOrigin analysis showed a close association between EMPA-related lipid metabolic pathways and gut microbiota alterations, characterized by reduced abundances of Firmicutes and Desulfovibrio and increased abundance of Akkermansia (all P < 0.05). The metabolic homeostasis of ORG mice, especially in lipid metabolism, was disrupted and closely associated with gut microbiota alterations, contributing to the progression of ORG. EMPA treatment improved kidney function and morphology by regulating lipid metabolism through the gut-kidney axis, highlighting a novel therapeutic approach for ORG. NEW & NOTEWORTHY Our study uncovered that empagliflozin (EMPA) potentially protects renal function and morphology in obesity-related glomerulopathy (ORG) mice by regulating the gut-kidney axis. EMPA's reno-protective effects in ORG mice are associated with the lipid metabolism, especially in glycerophospholipid metabolism and the pantothenate/CoA synthesis pathways. EMPA's modulation of gut microbiota appears to be pivotal in suppressing glycerol 3-phosphate and CoA synthesis. The insights into gut microbiota-host metabolic interactions offer a novel therapeutic approach for ORG.
Collapse
Affiliation(s)
- Lei Lei
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Ting Zhu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Tian-Jiao Cui
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Yvonne Liu
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Medical Faculty of Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Johann-Georg Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xin Chen
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Xue-Mei Zhang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Kai-Wen Cai
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Zi-Yan Deng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Xiao-Hua Wang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Chun Tang
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Lian Lin
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Christoph Reichetzeder
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute for Clinical Research and Systems Medicine, Health and Medical University, Potsdam, Germany
| | - Zhi-Hua Zheng
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
| | - Berthold Hocher
- Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
- Institute of Medical Diagnostics, IMD, Berlin, Germany
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA, Changsha, People's Republic of China
- NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha, People's Republic of China
| | - Yong-Ping Lu
- Department of Nephrology, Center of Kidney and Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, People's Republic of China
- Department of Nephrology, the First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
2
|
Chen J, Wang W, Wang L, Wang H, Hu M, Zhou J, Du G, Zeng W. Efficient De Novo Biosynthesis of Curcumin in Escherichia coli by Optimizing Pathway Modules and Increasing the Malonyl-CoA Supply. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:566-576. [PMID: 38154088 DOI: 10.1021/acs.jafc.3c07379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Curcumin is a natural phenylpropanoid compound with various biological activities and is widely used in food and pharmaceuticals. A de novo curcumin biosynthetic pathway was constructed in Escherichia coli BL21(DE3). Optimization of the curcumin biosynthesis module achieved a curcumin titer of 26.8 ± 0.6 mg/L. Regulating the metabolic fluxes of the β-oxidation pathway and fatty acid elongation cycle and blocking the endogenous malonyl-CoA consumption pathway increased the titer to 113.6 ± 7.1 mg/L. Knockout of endogenous curcumin reductase (curA) and intermediate product detoxification by heterologous expression of the solvent-resistant pump (srpB) increased the titer to 137.5 ± 3.0 mg/L. A 5 L pilot-scale fermentation, using a three-stage pH alternation strategy, increased the titer to 696.2 ± 20.9 mg/L, 178.5-fold higher than the highest curcumin titer from de novo biosynthesis previously reported, thereby laying the foundation for efficient biosynthesis of curcumin and its derivatives.
Collapse
Affiliation(s)
- Jianbin Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, 443 Via Ortega, Stanford, California 94305, United States
| | - Lian Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Huijing Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - MingLong Hu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Kudo H, Ono S, Abe K, Matsuda M, Hasunuma T, Nishizawa T, Asayama M, Nishihara H, Chohnan S. Enhanced supply of acetyl-CoA by exogenous pantothenate kinase promotes synthesis of poly(3-hydroxybutyrate). Microb Cell Fact 2023; 22:75. [PMID: 37081440 PMCID: PMC10116679 DOI: 10.1186/s12934-023-02083-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/06/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Coenzyme A (CoA) is a carrier of acyl groups. This cofactor is synthesized from pantothenic acid in five steps. The phosphorylation of pantothenate is catalyzed by pantothenate kinase (CoaA), which is a key step in the CoA biosynthetic pathway. To determine whether the enhancement of the CoA biosynthetic pathway is effective for producing useful substances, the effect of elevated acetyl-CoA levels resulting from the introduction of the exogenous coaA gene on poly(3-hydroxybutyrate) [P(3HB)] synthesis was determined in Escherichia coli, which express the genes necessary for cyanobacterial polyhydroxyalkanoate synthesis (phaABEC). RESULTS E. coli containing the coaA gene in addition to the pha genes accumulated more P(3HB) compared with the transformant containing the pha genes alone. P(3HB) production was enhanced by precursor addition, with P(3HB) content increasing from 18.4% (w/w) to 29.0% in the presence of 0.5 mM pantothenate and 16.3%-28.2% by adding 0.5 mM β-alanine. Strains expressing the exogenous coaA in the presence of precursors contained acetyl-CoA in excess of 1 nmol/mg of dry cell wt, which promoted the reaction toward P(3HB) formation. The amount of acetate exported into the medium was three times lower in the cells carrying exogenous coaA and pha genes than in the cells carrying pha genes alone. This was attributed to significantly enlarging the intracellular pool size of CoA, which is the recipient of acetic acid and is advantageous for microbial production of value-added materials. CONCLUSIONS Enhancing the CoA biosynthetic pathway with exogenous CoaA was effective at increasing P(3HB) production. Supplementing the medium with pantothenate facilitated the accumulation of P(3HB). β-Alanine was able to replace the efficacy of adding pantothenate.
Collapse
Affiliation(s)
- Hirotaka Kudo
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Sho Ono
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Kenta Abe
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Mami Matsuda
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomohisa Hasunuma
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
- Engineering Biology Research Center, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501, Japan
| | - Tomoyasu Nishizawa
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Munehiko Asayama
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Hirofumi Nishihara
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|