1
|
Asqardokht-Aliabadi A, Sarabi-Aghdam V, Homayouni-Rad A, Hosseinzadeh N. Postbiotics in the Bakery Products: Applications and Nutritional Values. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10327-y. [PMID: 39066881 DOI: 10.1007/s12602-024-10327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
In recent years, the consumption of postbiotics has gained significant attention due to their potential health benefits. However, their application in the bakery industry remains underutilized. This review focuses on recent advances in the use of postbiotics, specifically the metabolites of lactic acid bacteria, in bakery products. We provide a concise overview of the multifaceted benefits of postbiotics, including their role as natural antioxidants, antimicrobials, and preservatives, and their potential to enhance product quality, extend shelf-life, and contribute to consumer welfare. This review combines information from various sources to provide a comprehensive update on recent advances in the role of postbiotics in bakery products, subsequently discussing the concept of sourdough as a leavening agent and its role in improving the nutritional profile of bakery products. We highlighted the positive effects of postbiotics on bakery items, such as improved texture, flavor, and shelf life, as well as their potential to contribute to overall health through their antioxidant properties and their impact on gut health. Overall, this review emphasizes the promising potential of postbiotics to revolutionize the bakery industry and promote healthier and more sustainable food options. The integration of postbiotics into bakery products represents a promising frontier and offers innovative possibilities to increase product quality, reduce food waste, and improve consumer health. Further research into refining techniques to incorporate postbiotics into bakery products is essential for advancing the health benefits and eco-friendly nature of these vital food items.
Collapse
Affiliation(s)
- Abolfazl Asqardokht-Aliabadi
- Department of Food Science and Technology, Faculty of Agricultural Engineering, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
| | - Vahideh Sarabi-Aghdam
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aziz Homayouni-Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Negin Hosseinzadeh
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Çalık Koç G, Rezaei F, Kahraman Ilıkkan Ö, Bağdat EŞ. Effect of seed priming with polyethylene glycol, distilled water, and sorbitol on physical, chemical quality parameters, and nodule microbiota of lentil. Braz J Microbiol 2024:10.1007/s42770-024-01456-1. [PMID: 39042247 DOI: 10.1007/s42770-024-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 07/06/2024] [Indexed: 07/24/2024] Open
Abstract
The aim of this study was to investigate the effects of different seed priming solutions on physical and chemical quality parameters of lentils as well as nodule bacterial diversity before sowing. Therefore, lentil seeds were treated with polyethylene glycol (PEG 6000) (15%), sorbitol (6%), and distilled water, and none pretreated lentils (Lens culinaris) were used as control. The seeds were kept in these solutions for 24 h, then dried on toweling paper for 24 h, and used for the experiment. For nodule microbiota analysis, the plant root was divided into two equal parts, upper and lower, according to the root length and all nodules were collected from each region. According to the results, it was observed that emergence and flowering started late in the control compared to other seed priming treatments. Sorbitol application was found to provide advantages in terms of germination and seedling development. PEG and distilled water (DW) treatments showed an increase in total phenolic component activity; however, no significant change was observed in DPPH radical scavenging activity. Amplicon-based metagenomic analysis revealed that sorbitol and distilled water were the seed priming solutions altering the species diversity, especially Rhizobium sp. as the genus. In the comparison of samples taken from different parts of the root nodules, more Rhizobium sp. as a genus and Rhizobium leguminosarum as the species were found in the nodules collected from the top of the root. According to the overall results of lentil pod, lentil plant, and microbiota, sorbitol and DW can be considered to be a good priming solutions.
Collapse
Affiliation(s)
- Gülşah Çalık Koç
- Kahramankazan Vocational School, Food Technology Program, Başkent University, Ankara, Turkey
- Institute of Transplantation and Gene Sciences, Başkent University, Ankara, Turkey
| | - Fereshteh Rezaei
- Kahramankazan Vocational School, Food Quality Control and Analysis Program, Başkent University, Ankara, Turkey
| | - Özge Kahraman Ilıkkan
- Kahramankazan Vocational School, Food Quality Control and Analysis Program, Başkent University, Ankara, Turkey.
| | - Elif Şeyma Bağdat
- Kahramankazan Vocational School, Food Technology Program, Başkent University, Ankara, Turkey
| |
Collapse
|
3
|
Chen M, Kan J, Zhang Y, Zhao J, Lv C, Zhong B, Li C, Qin W. Combined Analysis of Metabolomics and Biochemical Changes Reveals the Nutritional and Functional Characteristics of Red Palm Weevil Rhynchophus ferrugineus (Coleoptera: Curculionidae) Larvae at Different Developmental Stages. INSECTS 2024; 15:294. [PMID: 38667424 PMCID: PMC11050521 DOI: 10.3390/insects15040294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/23/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
In this study, the changes in the conventional nutrient and mineral compositions as well as the metabolomics characteristics of the red palm weevil (RPW) Rhynchophus ferrugineus Olivier (Curculionidae: Coleoptera) larvae at early (EL), middle (ML) and old (OL) developmental stages were investigated. Results showed that the EL and ML had the highest content of protein (53.87 g/100 g dw) and fat (67.95 g/100 g), respectively, and three kinds of RPW larvae were all found to be rich in unsaturated fatty acids (52.17-53.12%), potassium (5707.12-15,865.04 mg/kg) and phosphorus (2123.87-7728.31 mg/kg). In addition, their protein contained 17 amino acids with the largest proportion of glutamate. A total of 424 metabolites mainly including lipids and lipid-like molecules, organic acids and their derivatives, organic heterocycle compounds, alkaloids and their derivatives, etc. were identified in the RPW larvae. There was a significant enrichment in the ABC transport, citrate cycle (TCA cycle), aminoacyl-tRNA biosynthesis, and mTOR signaling pathways as the larvae grow according to the analysis results of the metabolic pathways of differential metabolites. The water extract of EL exhibited relatively higher hydroxyl, 2,2-diphenyl-1-pyrroline hydrochloride (DPPH) and 2,2'-azobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging ability with the EC50 values of 1.12 mg/mL, 11.23 mg/mL, and 2.52 mg/mL, respectively. These results contribute to a better understanding of the compositional changes of the RPW larvae during its life cycle and provide a theoretical grounding for its deep processing and high-value utilization.
Collapse
Affiliation(s)
- Mengran Chen
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests of Ministry of Education, College of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China;
| | - Jintao Kan
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Yufeng Zhang
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Jinhao Zhao
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Chaojun Lv
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Baozhu Zhong
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Chaoxu Li
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| | - Weiquan Qin
- Hainan Engineering Center of Coconut Further Processing, Coconut Research Institute of Chinese Academy of Tropical Agricultural Sciences, Wenchang 571339, China; (J.K.); (J.Z.); (C.L.); (C.L.); (B.Z.)
| |
Collapse
|
4
|
Meng X, Shu Q. Novel primers to identify a wider diversity of butyrate-producing bacteria. World J Microbiol Biotechnol 2024; 40:76. [PMID: 38252387 DOI: 10.1007/s11274-023-03872-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Butyrate-producing bacteria are a functionally important part of the intestinal tract flora, and the resulting butyric acid is essential for maintaining host intestinal health, regulating the immune system, and influencing energy metabolism. However, butyrate-producing bacteria have not been defined as a coherent phylogenetic group. They are primarily identified using primers for key genes in the butyrate-producing pathway, and their use has been limited to the Bacillota and Bacteroidetes phyla. To overcome this limitation, we developed functional gene primers able to identify butyrate-producing bacteria through the butyrate kinase gene, which encodes the enzyme involved in the final step of the butyrate-producing pathway. Genomes extracted from human and rat feces were used to amplify the target genes through PCR. The obtained sequences were analyzed using BLASTX to construct a developmental tree using the MEGA software. The newly designed butyrate kinase gene primers allowed to recognize a wider diversity of butyrate-producing bacteria than that recognized using currently available primers. Specifically, butyrate-producing bacteria from the Synergistota and Spirochaetota phyla were identified for the first time using these primers. Thus, the developed primers provide a more accurate method for researchers and doctors to identify potential butyrate-producing bacteria and deepen our understanding of butyrate-producing bacterial species.
Collapse
Affiliation(s)
- Xianbin Meng
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Qinglong Shu
- College of Traditional Chinese Medicine, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
5
|
Suenami S, Sato M, Miyazaki R. Gustatory Responsiveness of Honey Bees Colonized with a Defined or Conventional Gut Microbiota. Microbes Environ 2024; 39:ME23081. [PMID: 38447985 PMCID: PMC10982108 DOI: 10.1264/jsme2.me23081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 01/19/2024] [Indexed: 03/08/2024] Open
Abstract
Gut microbes have many beneficial functions for host animals, such as food digestion and development of the immune system. An increasing number of studies report that gut bacteria also affect host neural function and behavior. The sucrose responsiveness of the western honey bee Apis mellifera, which harbors a characteristic gut microbiota, was recently reported to be increased by the presence of gut microbes. However, this responsiveness may vary depending on the experimental design, as animal behavior may be modulated by physiological states and environmental conditions. To evaluate the robustness of the effects of the gut microbiota on host gustatory responsiveness, we herein examined the sucrose responsiveness of honey bees colonized with a defined bacterial community or a conventional gut microbiota extracted from a field-collected bee. Although colonization was experimentally verified, sucrose responsiveness did not significantly differ among treatments after the 2- or 5-h starvation period. We concluded that the sucrose responsiveness of A. mellifera is not always affected by its gut microbiota. Therefore, host physiological conditions and environmental factors need to be considered when evaluating the impact of the gut microbiota on host neural function and behavior.
Collapse
Affiliation(s)
- Shota Suenami
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Masato Sato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
| | - Ryo Miyazaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305–8566, Japan
- Computational Bio Big Data Open Innovation Laboratory (CBBD-OIL), AIST, Tokyo 169–8555, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305–8572, Japan
| |
Collapse
|
6
|
Bazukyan I, Georgieva-Miteva D, Velikova T, Dimov SG. In Silico Probiogenomic Characterization of Lactobacillus delbrueckii subsp. lactis A4 Strain Isolated from an Armenian Honeybee Gut. INSECTS 2023; 14:540. [PMID: 37367356 DOI: 10.3390/insects14060540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
A Lactobacillus delbrueckii ssp. lactis strain named A4, isolated from the gut of an Armenian honeybee, was subjected to a probiogenomic characterization because of its unusual origin. A whole-genome sequencing was performed, and the bioinformatic analysis of its genome revealed a reduction in the genome size and the number of the genes-a process typical for the adaptation to endosymbiotic conditions. Further analysis of the genome revealed that Lactobacillus delbrueckii ssp. lactis strain named A4 could play the role of a probiotic endosymbiont because of the presence of intact genetic sequences determining antioxidant properties, exopolysaccharides synthesis, adhesion properties, and biofilm formation, as well as an antagonistic activity against some pathogens which is not due to pH or bacteriocins production. Additionally, the genomic analysis revealed significant potential for stress tolerance, such as extreme pH, osmotic stress, and high temperature. To our knowledge, this is the first report of a potentially endosymbiotic Lactobacillus delbrueckii ssp. lactis strain adapted to and playing beneficial roles for its host.
Collapse
Affiliation(s)
- Inga Bazukyan
- Faculty of Biology, Yerevan State University, Yerevan 0025, Armenia
| | | | - Tsvetelina Velikova
- Medical Faculty, Sofia University St. Kliment Ohridski, 1 Kozyak Str., 1407 Sofia, Bulgaria
| | - Svetoslav G Dimov
- Faculty of Biology, Sofia University St. Kliment Ohridski, 8 Dragan Tzankov Str., 1164 Sofia, Bulgaria
| |
Collapse
|