1
|
Ruma YN, Bu G, Hattne J, Gonen T. MicroED structure of the C11 cysteine protease clostripain. J Struct Biol X 2024; 10:100107. [PMID: 39100863 PMCID: PMC11296011 DOI: 10.1016/j.yjsbx.2024.100107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 08/06/2024] Open
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine-specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum clostripain determined at 2.5 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 and 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
Affiliation(s)
- Yasmeen N. Ruma
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Guanhong Bu
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Johan Hattne
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA 90095, United States
- Department of Physiology, University of California, Los Angeles, Los Angeles, CA 90095, United States
| |
Collapse
|
2
|
Ruma YN, Bu G, Gonen T. MicroED structure of the C11 cysteine protease Clostripain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574240. [PMID: 38260293 PMCID: PMC10802345 DOI: 10.1101/2024.01.04.574240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Clostripain secreted from Clostridium histolyticum is the founding member of the C11 family of Clan CD cysteine peptidases, which is an important group of peptidases secreted by numerous bacteria. Clostripain is an arginine specific endopeptidase. Because of its efficacy as a cysteine peptidase, it is widely used in laboratory settings. Despite its importance the structure of clostripain remains unsolved. Here we describe the first structure of an active form of C. histolyticum Clostripain determined at 3.6 Å resolution using microcrystal electron diffraction (MicroED). The structure was determined from a single nanocrystal after focused ion beam milling. The structure of Clostripain shows a typical Clan CD α/β/α sandwich architecture and the Cys231/His176 catalytic dyad in the active site. It has a large electronegative substrate binding pocket showing its ability to accommodate large and diverse substrates. A loop in the heavy chain formed between residues 452 to 457 is potentially important for substrate binding. In conclusion, this result demonstrates the importance of MicroED to determine the unknown structure of macromolecules such as Clostripain, which can be further used as a platform to study substrate binding and design of potential inhibitors against this class of peptidases.
Collapse
|
3
|
Grewal JS, McLuskey K, Das D, Myburgh E, Wilkes J, Brown E, Lemgruber L, Gould MK, Burchmore RJ, Coombs GH, Schnaufer A, Mottram JC. PNT1 Is a C11 Cysteine Peptidase Essential for Replication of the Trypanosome Kinetoplast. J Biol Chem 2016; 291:9492-500. [PMID: 26940875 PMCID: PMC4850289 DOI: 10.1074/jbc.m116.714972] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Indexed: 11/16/2022] Open
Abstract
The structure of a C11 peptidase PmC11 from the gut bacterium, Parabacteroides merdae, has recently been determined, enabling the identification and characterization of a C11 orthologue, PNT1, in the parasitic protozoon Trypanosoma brucei. A phylogenetic analysis identified PmC11 orthologues in bacteria, archaea, Chromerids, Coccidia, and Kinetoplastida, the latter being the most divergent. A primary sequence alignment of PNT1 with clostripain and PmC11 revealed the position of the characteristic His-Cys catalytic dyad (His99 and Cys136), and an Asp (Asp134) in the potential S1 binding site. Immunofluorescence and cryoelectron microscopy revealed that PNT1 localizes to the kinetoplast, an organelle containing the mitochondrial genome of the parasite (kDNA), with an accumulation of the protein at or near the antipodal sites. Depletion of PNT1 by RNAi in the T. brucei bloodstream form was lethal both in in vitro culture and in vivo in mice and the induced population accumulated cells lacking a kinetoplast. In contrast, overexpression of PNT1 led to cells having mislocated kinetoplasts. RNAi depletion of PNT1 in a kDNA independent cell line resulted in kinetoplast loss but was viable, indicating that PNT1 is required exclusively for kinetoplast maintenance. Expression of a recoded wild-type PNT1 allele, but not of an active site mutant restored parasite viability after induction in vitro and in vivo confirming that the peptidase activity of PNT1 is essential for parasite survival. These data provide evidence that PNT1 is a cysteine peptidase that is required exclusively for maintenance of the trypanosome kinetoplast.
Collapse
Affiliation(s)
- Jaspreet S Grewal
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Karen McLuskey
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Debanu Das
- the Joint Center for Structural Genomics, Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Elmarie Myburgh
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Jonathan Wilkes
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Elaine Brown
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Leandro Lemgruber
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Matthew K Gould
- the Institute of Immunology and Infection Research and Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Richard J Burchmore
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Graham H Coombs
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Achim Schnaufer
- the Institute of Immunology and Infection Research and Centre for Immunity, Infection, and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Jeremy C Mottram
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom,
| |
Collapse
|
4
|
McLuskey K, Grewal JS, Das D, Godzik A, Lesley SA, Deacon AM, Coombs GH, Elsliger MA, Wilson IA, Mottram JC. Crystal Structure and Activity Studies of the C11 Cysteine Peptidase from Parabacteroides merdae in the Human Gut Microbiome. J Biol Chem 2016; 291:9482-91. [PMID: 26940874 PMCID: PMC4850288 DOI: 10.1074/jbc.m115.706143] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Indexed: 11/21/2022] Open
Abstract
Clan CD cysteine peptidases, a structurally related group of peptidases that include mammalian caspases, exhibit a wide range of important functions, along with a variety of specificities and activation mechanisms. However, for the clostripain family (denoted C11), little is currently known. Here, we describe the first crystal structure of a C11 protein from the human gut bacterium, Parabacteroides merdae (PmC11), determined to 1.7-Å resolution. PmC11 is a monomeric cysteine peptidase that comprises an extended caspase-like α/β/α sandwich and an unusual C-terminal domain. It shares core structural elements with clan CD cysteine peptidases but otherwise structurally differs from the other families in the clan. These studies also revealed a well ordered break in the polypeptide chain at Lys147, resulting in a large conformational rearrangement close to the active site. Biochemical and kinetic analysis revealed Lys147 to be an intramolecular processing site at which cleavage is required for full activation of the enzyme, suggesting an autoinhibitory mechanism for self-preservation. PmC11 has an acidic binding pocket and a preference for basic substrates, and accepts substrates with Arg and Lys in P1 and does not require Ca2+ for activity. Collectively, these data provide insights into the mechanism and activity of PmC11 and a detailed framework for studies on C11 peptidases from other phylogenetic kingdoms.
Collapse
Affiliation(s)
- Karen McLuskey
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | - Jaspreet S Grewal
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom
| | - Debanu Das
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Adam Godzik
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, the Program on Bioinformatics and Systems Biology, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California 92037
| | - Scott A Lesley
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, the Protein Sciences Department, Genomics Institute of the Novartis Research Foundation, San Diego, California 92121, and
| | - Ashley M Deacon
- the Joint Center for Structural Genomics, the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025
| | - Graham H Coombs
- the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, United Kingdom
| | - Marc-André Elsliger
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037
| | - Ian A Wilson
- the Joint Center for Structural Genomics, the Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037,
| | - Jeremy C Mottram
- From the Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, United Kingdom, the Department of Biology, Centre for Immunology and Infection, University of York, Wentworth Way, Heslington, York YO10 5DD, United Kingdom,
| |
Collapse
|
5
|
McLuskey K, Mottram J. Comparative structural analysis of the caspase family with other clan CD cysteine peptidases. Biochem J 2015; 466:219-32. [PMID: 25697094 PMCID: PMC4357240 DOI: 10.1042/bj20141324] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/19/2014] [Accepted: 12/08/2014] [Indexed: 11/29/2022]
Abstract
Clan CD forms a structural group of cysteine peptidases, containing seven individual families and two subfamilies of structurally related enzymes. Historically, it is most notable for containing the mammalian caspases, on which the structures of the clan were founded. Interestingly, the caspase family is split into two subfamilies: the caspases, and a second subfamily containing both the paracaspases and the metacaspases. Structural data are now available for both the paracaspases and the metacaspases, allowing a comprehensive structural analysis of the entire caspase family. In addition, a relative plethora of structural data has recently become available for many of the other families in the clan, allowing both the structures and the structure-function relationships of clan CD to be fully explored. The present review compares the enzymes in the caspase subfamilies with each other, together with a comprehensive comparison of all the structural families in clan CD. This reveals a diverse group of structures with highly conserved structural elements that provide the peptidases with a variety of substrate specificities and activation mechanisms. It also reveals conserved structural elements involved in substrate binding, and potential autoinhibitory functions, throughout the clan, and confirms that the metacaspases are structurally diverse from the caspases (and paracaspases), suggesting that they should form a distinct family of clan CD peptidases.
Collapse
Key Words
- caspase
- clan cd
- crystallography
- metacaspase
- peptidase
- protein structure
- ap, activation peptide
- card, caspase recruitment domain
- chf, caspase/haemoglobinase fold
- cpd, cysteine peptidase domain
- csd, c-terminal subdomain
- dd, death domain
- ded, death effector domain
- insp6, myo-inositol hexakisphosphate
- lsam, legumain stabilization and activity modulation
- lsd1, lesion-simulating disease 1
- malt1, mucosa-associated lymphoid tissue translocation protein 1
- martx, multi-functional, autoprocessing repeat in toxin
- rmsd, root-mean-square deviation
- sse, secondary structural element
- xiap, x-linked inhibitor of apoptosis
- z-vrpr-fmk, benzoxycarbonyl-val-arg-pro-arg-fluoromethylketone
Collapse
Affiliation(s)
- Karen McLuskey
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| | - Jeremy C. Mottram
- *Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, UK
| |
Collapse
|
6
|
Tanaka H, Nariya H, Suzuki M, Houchi H, Tamai E, Miyata S, Okabe A. High-level production and purification of clostripain expressed in a virulence-attenuated strain of Clostridium perfringens. Protein Expr Purif 2010; 76:83-9. [PMID: 20940055 DOI: 10.1016/j.pep.2010.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Revised: 10/06/2010] [Accepted: 10/06/2010] [Indexed: 11/30/2022]
Abstract
Clostripain (CLO) produced by Clostridium histolyticum is an arginine-specific endopeptidase with the potential for applicability to diverse medical and industrial uses. In this study, we developed an expression system allowing high-level production and efficient purification of recombinant CLO (rCLO). Our expression system comprises pCLO, an rCLO expressing vector, and Clostridium perfringens 13Δ6, an in-frame deletion strain as to six genes encoding major virulence factors and secretory proteins. rCLO was purified from the culture supernatant of C. perfringens 13Δ6/pCLO by ammonium sulfate precipitation, hydroxyapatite chromatography, and affinity chromatography on benzamidine-Sepharose. From 200 ml of culture supernatant 4.5 mg of purified rCLO was obtained. N-Terminal amino acid sequencing and molecular mass determination of the purified rCLO and commercially available CLO revealed that the two enzymes have identical subunits, a 38.1-kDa heavy chain and a 15.0-kDa light chain, indicating that rCLO is processed in the same manner as CLO. Analysis of the enzymatic activities toward N-benzoyl-L-arginine p-nitroanilide and acyl-L-lysine p-nitroanilide showed that rCLO and CLO exhibit strict specificity for arginine at the P1 position, and that the specific activity of the former is approximately 2-fold higher than that of the latter. These results indicate that the new method involving a virulence-attenuated C. perfringens strain is useful for preparing large amounts of high-grade rCLO.
Collapse
Affiliation(s)
- Hiroaki Tanaka
- Department of Microbiology, Faculty of Medicine, Kagawa University, 1750-1 Miki-cho, Kita-gun, Kagawa 761-0793, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Purification and characterization of a clostripain-like protease from a recombinant Clostridium perfringens culture. Microbiology (Reading) 2010; 156:561-569. [DOI: 10.1099/mic.0.031609-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Clostridium perfringens produces a homologue of clostripain (Clo), the arginine-specific endopeptidase of Clostridium histolyticum. To determine the biochemical and biological properties of the C. perfringens homologue (Clp), it was purified from the culture supernatant of a recombinant C. perfringens strain by cation-exchange chromatography and ultrafiltration. Analysis by SDS-PAGE, N-terminal amino acid sequencing and TOF mass spectrometry revealed that Clp consists of two polypeptides comprising heavy (38 kDa) and light (16 kDa or 15 kDa) chains, and that the two light chains differ in the N-terminal cleavage site. This difference in the light chain did not affect the enzymic activity toward N-benzoyl-l-arginine p-nitroanilide (Bz-l-arginine pNA), as demonstrated by assaying culture supernatants differing in the relative ratio of the two light chains. Although the purified Clp preferentially degraded Bz-dl-arginine pNA rather than Bz-dl-lysine pNA, it degraded the latter more efficiently than did Clo. Clp showed 2.3-fold higher caseinolytic activity than Clo, as expected from the difference in substrate specificity. Clp caused an increase in vascular permeability when injected intradermally into mice, implying a possible role of Clp in the pathogenesis of clostridial myonecrosis.
Collapse
|
8
|
Molecular characterization of the protease from Clostridium botulinum serotype C responsible for nicking in botulinum neurotoxin complex. Biochem Biophys Res Commun 2008; 379:309-13. [PMID: 19103155 DOI: 10.1016/j.bbrc.2008.12.050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Accepted: 12/10/2008] [Indexed: 11/21/2022]
Abstract
A protease was purified from the culture medium of Clostridium botulinum serotype C strain Stockholm (C-St). The purified protease belonged to the cysteine protease family based on assays for enzyme inhibitors, activators and kinetic parameters. The protease formed a binary complex consisting of 41- and 17-kDa proteins held together non-covalently. The DNA sequence encoding the protease gene was shown to be a single open reading frame of 1593 nucleotides, predicting 530 amino acid residues including a signal peptide. The N-terminal region of the native enzyme underwent further proteolytic modification after processing by a signal peptidase. The protease introduced intermolecular cleavage into an intact single chain botulinum neurotoxin (BoNT) at a specific site. Homology modeling and docking simulation of C-St BoNT and C-St protease demonstrated that the specific nicking-site of the BoNT appears to fit into the deep pocket in the active site of the protease.
Collapse
|
9
|
Rudenskaya GN, Pupov DV. Cysteine proteinases of microorganisms and viruses. BIOCHEMISTRY (MOSCOW) 2008; 73:1-13. [PMID: 18294123 PMCID: PMC7087786 DOI: 10.1134/s000629790801001x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers properties of secreted cysteine proteinases of protozoa, bacteria, and viruses and presents information on the contemporary taxonomy of cysteine proteinases. Literature data on the structure and physicochemical and enzymatic properties of these enzymes are reviewed. High interest in cysteine proteinases is explained by the discovery of these enzymes mostly in pathogenic organisms. The role of the proteinases in pathogenesis of several severe diseases of human and animals is discussed.
Collapse
Affiliation(s)
- G N Rudenskaya
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | |
Collapse
|
10
|
Kim CK, Lee SY, Kwon OJ, Lee SM, Nah SY, Jeong SM. Secretory expression of active clostripain in Escherichia coli. J Biotechnol 2007; 131:346-52. [PMID: 17767971 DOI: 10.1016/j.jbiotec.2007.07.936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 07/10/2007] [Accepted: 07/16/2007] [Indexed: 11/20/2022]
Abstract
In this study, the clostripain gene was modified and its signal sequence was replaced with that of penicillin G acylase (PGA). The core clostripain protein fused to the PGA signal peptide was also prepared. With regard to the expression of the clostripain precursors, the majority of clostripain activity was observed in the culture media, thereby indicating that both the clostripain signal peptide and the PGA signal peptide were recognized in the E. coli secretion pathway, and the precursors successfully matured into the active form. Otherwise, the activity was rather low when the core protein was expressed, which indicates that the clostripain pro-peptide is important in the formation of the active enzyme in E. coli. Enzyme activity reached a value of 3200U/L in CGY media for high expression. The recombinant clostripain and porcine carboxypeptidase B were used in the conversion of a proinsulin fusion protein into insulin. The leader peptide (LP) and the proinsulin C-peptide appeared to have been removed simultaneously, and the final cleavage product evidenced an HPLC retention time identical to that of the insulin standard, thereby implying that the clostripain specifically cleaved the arginine residues in the LP and in the C-peptide. We have also demonstrated the possibility that the recombinant clostripain might prove useful in the production of insulin from the proinsulin fusion protein.
Collapse
Affiliation(s)
- Chang-Kyu Kim
- College of Animal Bioscience & Technology, Konkuk University, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
11
|
Wenig K, Chatwell L, von Pawel-Rammingen U, Björck L, Huber R, Sondermann P. Structure of the streptococcal endopeptidase IdeS, a cysteine proteinase with strict specificity for IgG. Proc Natl Acad Sci U S A 2004; 101:17371-6. [PMID: 15574492 PMCID: PMC536041 DOI: 10.1073/pnas.0407965101] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathogenic bacteria have developed complex and diverse virulence mechanisms that weaken or disable the host immune defense system. IdeS (IgG-degrading enzyme of Streptococcus pyogenes) is a secreted cysteine endopeptidase from the human pathogen S. pyogenes with an extraordinarily high degree of substrate specificity, catalyzing a single proteolytic cleavage at the lower hinge of human IgG. This proteolytic degradation promotes inhibition of opsonophagocytosis and interferes with the killing of group A Streptococcus. We have determined the crystal structure of the catalytically inactive mutant IdeS-C94S by x-ray crystallography at 1.9-A resolution. Despite negligible sequence homology to known proteinases, the core of the structure resembles the canonical papain fold although with major insertions and a distinct substrate-binding site. Therefore IdeS belongs to a unique family within the CA clan of cysteine proteinases. Based on analogy with inhibitor complexes of papain-like proteinases, we propose a model for substrate binding by IdeS.
Collapse
Affiliation(s)
- Katja Wenig
- Department of Structural Research, Max Planck Institute for Biochemistry, D-82152 Martinsried, Germany.
| | | | | | | | | | | |
Collapse
|
12
|
Labrou NE, Rigden DJ. The structure-function relationship in the clostripain family of peptidases. ACTA ACUST UNITED AC 2004; 271:983-92. [PMID: 15009210 DOI: 10.1111/j.1432-1033.2004.04000.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In this study we investigate the active-site structure and the catalytic mechanism of clostripain by using a combination of three separate techniques: affinity labelling, site-directed mutagenesis and molecular modelling. A benzamidinyl-diazo dichlorotriazine dye (BDD) was shown to act as an efficient active site-directed affinity label for Clostridium histolyticum clostripain. The enzyme, upon incubation with BDD in 0.1 m Hepes/NaOH buffer pH 7.6, exhibits a time-dependent loss of activity. The rate of inactivation exhibits a nonlinear dependence on the BDD concentration, which can be described by reversible binding of dye to the enzyme prior to the irreversible reaction. The dissociation constant of the reversible formation of an enzyme-BDD complex is KD = 74.6 +/- 2.1 micro m and the maximal rate constant of inactivation is k3 = 0.21 x min(-1). Effective protection against inactivation by BDD is provided by the substrate N-benzoyl-L-arginine ethyl ester (BAEE). Cleavage of BDD-modified enzyme with trypsin and subsequent separation of peptides by reverse-phase HPLC gave only one modified peptide. Amino acid sequencing of the modified tryptic peptide revealed the target site of BDD reaction to be His176. Site-directed mutagenesis was used to study further the functional role of His176. The mutant His176Ala enzyme exhibited zero activity against BAEE. Together with previous data, these results confirm that a catalytic dyad of His176 and Cys231 is responsible for cysteine peptidase activity in the C11 peptidase family. A molecular model of the catalytic domain of clostripain was constructed using a manually extended fold recognition-derived alignment with caspases. A rigorous iterative modelling scheme resulted in an objectively sound model which points to Asp229 as responsible for defining the strong substrate specificity for Arg at the P1 position. Two possible binding sites for the calcium required for auto-activation could be located. Database searches show that clostripain homologues are not confined to bacterial lineages and reveal an intriguing variety of domain architectures.
Collapse
Affiliation(s)
- Nikolaos E Labrou
- Laboratory of Enzyme Technology, Department of Agricultural Biotechnology, Agricultural University of Athens, Greece.
| | | |
Collapse
|
13
|
Abstract
Bacteria belonging to the genus Clostridium, both glycolytic and proteolytic, and both pathogenic and non-pathogenic, produce a battery of hydrolytic enzymes to obtain nutrients from various biopolymers. The clostridial hydrolytic enzymes are diverse, and are used or are potentially useful for fundamental and applied research purposes. Among them, enzymes degrading the major components in the extracellular matrix or on the cell surface in vertebrates are herein reviewed with special emphasis on recent knowledge gained through molecular biology of clostridial collagenases, sialidases and hyaluronidases. This paper also reviews some literature on the biotechnological approach to the designing of new molecular tools and drug delivery systems involving clostridial hydrolytic enzymes.
Collapse
Affiliation(s)
- O Matsushita
- Department of Microbiology, Faculty of Medicine, Kagawa Medical University, 1750-1 Miki-cho, Kita-gun, 761-0793, Kagawa, Japan.
| | | |
Collapse
|
14
|
Chen JM, Rawlings ND, Stevens RA, Barrett AJ. Identification of the active site of legumain links it to caspases, clostripain and gingipains in a new clan of cysteine endopeptidases. FEBS Lett 1998; 441:361-5. [PMID: 9891971 DOI: 10.1016/s0014-5793(98)01574-9] [Citation(s) in RCA: 164] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We show by site-directed mutagenesis that the catalytic residues of mammalian legumain, a recently discovered lysosomal asparaginycysteine endopeptidase, form a catalytic dyad in the motif His-Gly-spacer-Ala-Cys. We note that the same motif is present in the caspases, aspartate-specific endopeptidases central to the process of apoptosis in animal cells, and also in the families of clostripain and gingipain which are arginyl/lysyl endopeptidases of pathogenic bacteria. We propose that the four families have similar protein folds, are evolutionarily related in clan CD, and have common characteristics including substrate specificities dominated by the interactions of the S1 subsite.
Collapse
Affiliation(s)
- J M Chen
- MRC Molecular Enzymology Laboratory, Babraham Institute, Cambridge, UK
| | | | | | | |
Collapse
|