1
|
Li J, Li L, Li Q, Fang W, Sun Y, Lu Y, Wang J, Zhu Y, Zhang Y. Distribution and relationship of antibiotics, heavy metals and resistance genes in the upstream of Hanjiang River Basin in Shiyan, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:7115-7130. [PMID: 37453967 DOI: 10.1007/s10653-023-01683-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
The upstream basin of Hanjiang River is an important water source for the middle route of China's South-to-North Water Diversion Project. The quality of water and soil in the Hanjiang River have enormous biological and environmental impacts, and resistant genetic contamination has emerged, but only few studies are concerned the correlation between heavy metals and metal resistance genes (MRGs). In this study, 8 antibiotics and 19 heavy metals were analyzed, the results showed that the highest antibiotic content was tetracycline, with mean concentrations of 43.201 µg/kg and 0.022 µg/L. Mn was the highest heavy metal in soil with a content of 1408.284 µg/kg, and in water was Zn with a content of 10.611 µg/L. We found that the most abundant antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) in the study area were bacA and arsT genes, coding for resistance mechanisms to bacitracin and arsenic, respectively. The data showed that heavy metals had a greater impact on antibiotic resistance genes than antibiotics, and the correlation between resistance genes was significantly positive. This work expands our understanding of the correlations of antibiotics, heavy metals, and resistance genes in the Hanjiang River, indicating that more attention should be paid to the effects of resistance genes and the quality of water.
Collapse
Affiliation(s)
- Jing Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Lijuan Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Qin Li
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Wen Fang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yonghao Sun
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yu Lu
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Jing Wang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China
| | - Yanrong Zhu
- Hanjiang Bureau of Hydrology and Water Resources Survey, Bureau of Hydrology, Changjiang Water Resources Commission, Xiangyang, 441022, People's Republic of China
| | - Yao Zhang
- Center for Environment and Health in Water Source Area of South-to-North Water Diversion, School of Public Health, Hubei University of Medicine, Shiyan, 442000, People's Republic of China.
| |
Collapse
|
2
|
Kelbrick M, Hesse E, O' Brien S. Cultivating antimicrobial resistance: how intensive agriculture ploughs the way for antibiotic resistance. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001384. [PMID: 37606636 PMCID: PMC10482381 DOI: 10.1099/mic.0.001384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 08/10/2023] [Indexed: 08/23/2023]
Abstract
Antimicrobial resistance (AMR) is a growing threat to public health, global food security and animal welfare. Despite efforts in antibiotic stewardship, AMR continues to rise worldwide. Anthropogenic activities, particularly intensive agriculture, play an integral role in the dissemination of AMR genes within natural microbial communities - which current antibiotic stewardship typically overlooks. In this review, we examine the impact of anthropogenically induced temperature fluctuations, increased soil salinity, soil fertility loss, and contaminants such as metals and pesticides on the de novo evolution and dissemination of AMR in the environment. These stressors can select for AMR - even in the absence of antibiotics - via mechanisms such as cross-resistance, co-resistance and co-regulation. Moreover, anthropogenic stressors can prime bacterial physiology against stress, potentially widening the window of opportunity for the de novo evolution of AMR. However, research to date is typically limited to the study of single isolated bacterial species - we lack data on how intensive agricultural practices drive AMR over evolutionary timescales in more complex microbial communities. Furthermore, a multidisciplinary approach to fighting AMR is urgently needed, as it is clear that the drivers of AMR extend far beyond the clinical environment.
Collapse
Affiliation(s)
- Matthew Kelbrick
- Department of Evolution, Ecology and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Elze Hesse
- College of Life and Environmental Science, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Siobhán O' Brien
- Department of Microbiology, Moyne Institute for Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin 2, Republic of Ireland
| |
Collapse
|
3
|
González-Reguero D, Robas-Mora M, Fernández-Pastrana VM, Probanza-Lobo A, Jiménez-Gómez PA. Reduced Antibiotic Resistance in the Rhizosphere of Lupinus albus in Mercury-Contaminated Soil Mediated by the Addition of PGPB. BIOLOGY 2023; 12:801. [PMID: 37372086 PMCID: PMC10295369 DOI: 10.3390/biology12060801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023]
Abstract
The emergence of antibiotic resistance (AR) poses a threat to the "One Health" approach. Likewise, mercury (Hg) pollution is a serious environmental and public health problem. Its ability to biomagnify through trophic levels induces numerous pathologies in humans. As well, it is known that Hg-resistance genes and AR genes are co-selected. The use of plant-growth-promoting bacteria (PGPB) can improve plant adaptation, decontamination of toxic compounds and control of AR dispersal. The cenoantibiogram, a technique that allows estimating the minimum inhibitory concentration (MIC) of a microbial community, has been postulated as a tool to effectively evaluate the evolution of a soil. The present study uses the metagenomics of 16S rRNA gene amplicons to understand the distribution of the microbial soil community prior to bacterial inoculation, and the cenoantibiogram technique to evaluate the ability of four PGPB and their consortia to minimize antibiotic resistance in the rhizosphere of Lupinus albus var. Orden Dorado grown in Hg-contaminated soils. Results showed that the addition of A1 strain (Brevibacterium frigoritolerans) and its consortia with A2, B1 and B2 strains reduced the edaphic community´s MIC against cephalosporins, ertapenem and tigecycline. The metagenomic study revealed that the high MIC of non-inoculated soils could be explained by the bacteria which belong to the detected taxa,. showing a high prevalence of Proteobacteria, Cyanobacteria and Actinobacteria.
Collapse
Affiliation(s)
- Daniel González-Reguero
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | - Marina Robas-Mora
- Department of Pharmaceutical Science and Health, San Pablo University, CEU Universities, Ctra. Boadilla del Monte Km 5.300, 28668 Boadilla del Monte, Spain; (V.M.F.-P.)
| | | | | | | |
Collapse
|
4
|
Habibi N, Uddin S, Al-Sarawi H, Aldhameer A, Shajan A, Zakir F, Abdul Razzack N, Alam F. Metagenomes from Coastal Sediments of Kuwait: Insights into the Microbiome, Metabolic Functions and Resistome. Microorganisms 2023; 11:microorganisms11020531. [PMID: 36838497 PMCID: PMC9960530 DOI: 10.3390/microorganisms11020531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Coastal sediments in the proximity of wastewater and emergency outfalls are often sinks of pharmaceutical compounds and other organic and inorganic contaminants that are likely to affect the microbial community. The metabolites of these contaminants affect microbial diversity and their metabolic processes, resulting in undesirable effects on ecosystem functioning, thus necessitating the need to understand their composition and functions. In the present investigation, we studied the metagenomes of 12 coastal surface sediments through whole genome shot-gun sequencing. Taxonomic binning of the genes predicted about 86% as bacteria, 1% as archaea, >0.001% as viruses and Eukaryota, and 12% as other communities. The dominant bacterial, archaeal, and fungal genera were Woeseia, Nitrosopumilus, and Rhizophagus, respectively. The most prevalent viral families were Myoviridae and Siphoviridae, and the T4 virus was the most dominant bacteriophage. The unigenes further aligned to 26 clusters of orthologous genes (COGs) and five carbohydrate-active enzymes (CAZy) classes. Glycoside hydrolases (GH) and glycoside transferase (GT) were the highest-recorded CAzymes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) level 3 functions were subjugated by purine metabolism > ABC transporters > oxidative phosphorylation > two-component system > pyrimidine metabolism > pyruvate metabolism > quorum sensing > carbon fixation pathways > ribosomes > and glyoxalate and dicarboxylate metabolism. Sequences allying with plasmids, integrons, insertion sequences and antibiotic-resistance genes were also observed. Both the taxonomies and functional abundances exhibited variation in relative abundances, with limited spatial variability (ANOVA p > 0.05; ANOSIM-0.05, p > 0.05). This study underlines the dominant microbial communities and functional genes in the marine sediments of Kuwait as a baseline for future biomonitoring programs.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
- Correspondence:
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Hanan Al-Sarawi
- Environment Public Authority, Fourth Ring Road, Shuwaikh Industrial 70050, Kuwait
| | - Ahmed Aldhameer
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Faiz Alam
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
5
|
Gaeta NC, de Carvalho DU, Fontana H, Sano E, Moura Q, Fuga B, Munoz PM, Gregory L, Lincopan N. Genomic features of a multidrug-resistant and mercury-tolerant environmental Escherichia coli recovered after a mining dam disaster in South America. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153590. [PMID: 35122850 PMCID: PMC8994849 DOI: 10.1016/j.scitotenv.2022.153590] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 01/21/2022] [Accepted: 01/28/2022] [Indexed: 05/03/2023]
Abstract
Mining dam disasters contribute to the contamination of aquatic environments, impacting associated ecosystems and wildlife. A multidrug-resistant Escherichia coli strain (B2C) was isolated from a river water sample in Brazil after the Mariana mining dam disaster. The genome was sequenced using the Illumina MiSeq platform, and de novo assembled using Unicycler. Resistome, virulome, and plasmidome were predicted using bioinformatics tools. Data analysis revealed that E. coli B2C belonged to sequence type ST219 and phylogroup E. Strikingly, a broad resistome (antibiotics, hazardous heavy metals, and biocides) was predicted, including the presence of the clinically relevant blaCTX-M-2 extended-spectrum β-lactamase (ESBL) gene, qacE∆1 efflux pump gene, and the mer (mercury resistance) operon. SNP-based analysis revealed that environmental E. coli B2C was clustered along to ESBL-negative E. coli strains of ST219 isolated between 1980 and 2021 from livestock in the United States of America. Acquisition of clinically relevant genes by ST219 seems to be a recent genetic event related to anthropogenic activities, where polluted water environments may contribute to its dissemination at the human-animal-environment interface. In addition, the presence of genes conferring resistance to heavy metals could be related to environmental pollution from mining activities. Antimicrobial resistance genes could be essential biomarkers of environmental exposure to human and mining pollution.
Collapse
Affiliation(s)
- Natália C Gaeta
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil; Department of Preventive Veterinary Medicine and Animal Health, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil.
| | - Daniel U de Carvalho
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Herrison Fontana
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil
| | - Elder Sano
- One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Quézia Moura
- Federal Institute of Education, Science and Technology of Espírito Santo, Vila Velha, Brazil
| | - Bruna Fuga
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lilian Gregory
- Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Department of Clinical Analysis, School of Pharmacy, University of São Paulo, São Paulo, Brazil; One Health Brazilian Resistance Project (OneBR), Brazil; Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
6
|
Zhang L, Shen L, Ju Z, Fu Y, Qin S, Cui J. The key environmental influencing factors for the change of sediment bacterial community and antibiotics resistance genes in a long-term polluted lake, China. ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:1538-1549. [PMID: 33196986 DOI: 10.1007/s10646-020-02309-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/29/2020] [Indexed: 05/23/2023]
Abstract
In order to investigate the key environmental influencing factors for the change of sediment bacterial community structure (BCS) and antibiotics resistance genes (ARGs) in a long-term Quinolone antibiotics (QNs) and heavy metals (HMs) polluted lake, 16S rRNA MiSeq High-throughput Sequencing and Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) analysis methods were applied. Baiyangdian lake was subdivided into three habitats: (1) Habitat 1: greatly influenced by municipal wastewater; (2) Habitat 2: mainly impacted by aquaculture sewage and domestic wastewater; and (3) Habitat 3: with the least human activities. Through One-way ANOVA analysis, the results showed that most of QNs and HMs showed significant difference among three habitats. Both the highest richness and diversity indices of bacterial community appeared in Habitat 3. The abundance of Multidrug, Phenicol, Aminoglycoside, Teracycline, and Quinolone ARGs exhibited the highest values in Habitat 1, while the abundance of Macrolide-Lincosamide-Streptogramin (MLS), Rifamycinm, and Sulfonamide ARGs appeared the highest values in Habitat 2. The result of redundancy analysis exhibited that 68.8% and 93.8% of the change in BCS and ARGs can be explained by environmental factors, respectively. Pb (explained 37.5% (p = 0.002)) and Fleroxacin (FLE) (explained 51.3% (p = 0.026)) were the most important factors for the variation of BCS and ARGs, respectively. Therefore, the effects of antibiotics and HMs on BCS and ARGs should be simultaneously paid more attention. Furthermore, the ARGs results by PICRUSt were similar to the results by metagenomic shotgun sequencing analysis, thus the PICRUSt analysis method can be used in the future research.
Collapse
Affiliation(s)
- Lulu Zhang
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China.
| | - Lina Shen
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China
| | - Zejia Ju
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China
| | - Yu Fu
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China
| | - Shan Qin
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China
| | - Jiansheng Cui
- College of Environment Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050000, Hebei, China
| |
Collapse
|
7
|
Robas M, Probanza A, González D, Jiménez PA. Mercury and Antibiotic Resistance Co-Selection in Bacillus sp. Isolates from the Almadén Mining District. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18168304. [PMID: 34444052 PMCID: PMC8392408 DOI: 10.3390/ijerph18168304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/03/2021] [Accepted: 08/04/2021] [Indexed: 11/17/2022]
Abstract
Antibiotic resistance (AR) in the environment is of great global concern and a threat to public health. Soil bacteria, including Bacillus spp., could act as recipients and reservoirs of AR genes of clinical, livestock, or agricultural origin. These genes can be shared between bacteria, some of which could be potentially human pathogens. This process can be favored in conditions of abiotic stress, such as heavy metal contamination. The Almadén mining district (Ciudad Real, Spain) is one of the environments with the highest mercury (Hg) contamination worldwide. The link between heavy metal contamination and increased AR in environmental bacteria seems clear, due to co-resistance and co-selection phenomena. In the present study, 53 strains were isolated from rhizospheric and bulk soil samples in Almadén. AR was tested using Vitek® 2 and minimum inhibitory concentration (MIC) values were obtained and interpreted based on the criteria of the Clinical and Laboratory Standards Institute (CLSI) guidelines. Based on the resistance profiles, five different antibiotypes were established. The Hg minimum bactericidal concentration (MBC) of each strain was obtained using the plating method with increasing concentrations of HgCl2. A total of 72% of Bacillus spp. showed resistance to two or more commonly used antibiotics. A total of 38 isolates expressed AR to cephalosporins. Finally, the environmental co-selection of AR to cephalosporins and tetracyclines by selective pressure of Hg has been statistically demonstrated.
Collapse
|
8
|
Long S, Tong H, Zhang X, Jia S, Chen M, Liu C. Heavy Metal Tolerance Genes Associated With Contaminated Sediments From an E-Waste Recycling River in Southern China. Front Microbiol 2021; 12:665090. [PMID: 34054770 PMCID: PMC8155521 DOI: 10.3389/fmicb.2021.665090] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/19/2021] [Indexed: 11/13/2022] Open
Abstract
Heavy metal pollution that results from electronic waste (e-waste) recycling activities has severe ecological environmental toxicity impacts on recycling areas. The distribution of heavy metals and the impact on the bacteria in these areas have received much attention. However, the diversity and composition of the microbial communities and the characteristics of heavy metal resistance genes (HMRGs) in the river sediments after long-term e-waste contamination still remain unclear. In this study, eight river sediment samples along a river in a recycling area were studied for the heavy metal concentration and the microbial community composition. The microbial community consisted of 13 phyla including Firmicutes (ranging from 10.45 to 36.63%), Proteobacteria (11.76 to 32.59%), Actinobacteria (14.81 to 27.45%), and unclassified bacteria. The abundance of Firmicutes increased along with the level of contaminants, while Actinobacteria decreased. A canonical correspondence analysis (CCA) showed that the concentration of mercury was significantly correlated with the microbial community and species distribution, which agreed with an analysis of the potential ecological risk index. Moreover, manually curated HMRGs were established, and the HMRG analysis results according to Illumina high-throughput sequencing showed that the abundance of HMRGs was positively related to the level of contamination, demonstrating a variety of resistance mechanisms to adapt, accommodate, and live under heavy metal-contaminated conditions. These findings increase the understanding of the changes in microbial communities in e-waste recycling areas and extend our knowledge of the HMRGs involved in the recovery of the ecological environment.
Collapse
Affiliation(s)
- Shengqiao Long
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xuxiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Shuyu Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.,National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Altuğ G, Çardak M, Türetken PSÇ, Kalkan S, Gürün S. Antibiotic and Heavy Metal Resistant Bacteria Isolated from Aegean Sea Water and Sediment in Güllük Bay, Turkey : Quantifying the resistance of identified bacteria species with potential for environmental remediation applications. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15953337767424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy metal and antibiotic-resistant bacteria have potential for environmental bioremediation applications. Resistant bacteria were investigated in sediment and seawater samples taken from the Aegean Sea, Turkey, between 2011 and 2013. Bioindicator bacteria in seawater samples were
tested using the membrane filtration technique. The spread plate technique and VITEK® 2 Compact 30 micro identification system were used for heterotrophic aerobic bacteria in the samples. The minimum inhibition concentration method was used for heavy metal-resistant bacteria.
Antibiotic-resistant bacteria were tested using the disk diffusion method. All bacteria isolated from sediment samples showed 100% resistance to rifampicin, sulfonamide, tetracycline and ampicillin. 98% of isolates were resistant against nitrofurantoin and oxytetracycline. Higher antibiotic
and heavy metal resistance was recorded in bacteria isolated from sediment than seawater samples. The highest levels of bacterial metal resistance were recorded against copper (58.3%), zinc (33.8%), lead (32.1%), chromium (31%) and iron (25.2%). The results show that antibiotic and heavy metal
resistance in bacteria from sediment and seawater can be observed as responses to environmental influences including pollution in marine areas.
Collapse
Affiliation(s)
- Gülşen Altuğ
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih Istanbul, 34134, Turkey
| | - Mine Çardak
- Department of Fisheries Technology, Faculty of Çanakkale Applied Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus Çanakkale, 17020 Turkey
| | - Pelin Saliha Çiftçi Türetken
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul, 34134 Turkey
| | - Samet Kalkan
- Department of Marine Biology, Faculty of Fisheries and Aquatic Sciences, Recep Tayyip Erdoğan University, Zihni Derin Campus, Rize 53100 Turkey
| | - Sevan Gürün
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University, Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul 34134 Turkey
| |
Collapse
|
10
|
Chen J, McIlroy SE, Archana A, Baker DM, Panagiotou G. A pollution gradient contributes to the taxonomic, functional, and resistome diversity of microbial communities in marine sediments. MICROBIOME 2019; 7:104. [PMID: 31307536 PMCID: PMC6632204 DOI: 10.1186/s40168-019-0714-6] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 06/17/2019] [Indexed: 05/26/2023]
Abstract
BACKGROUND Coastal marine environments are one of the most productive ecosystems on Earth. However, anthropogenic impacts exert significant pressure on coastal marine biodiversity, contributing to functional shifts in microbial communities and human health risk factors. However, relatively little is known about the impact of eutrophication-human-derived nutrient pollution-on the marine microbial biosphere. RESULTS Here, we tested the hypothesis that benthic microbial diversity and function varies along a pollution gradient, with a focus on human pathogens and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG annotation revealed that zinc, lead, total volatile solids, and ammonia nitrogen were correlated with microbial diversity and function. We propose several microbes, including Planctomycetes and sulfate-reducing microbes as candidates to reflect pollution concentration. Annotation of antibiotic resistance genes showed that the highest abundance of efflux pumps was found at the most polluted site, corroborating the relationship between pollution and human health risk factors. This result suggests that sediments at polluted sites harbor microbes with a higher capacity to reduce intracellular levels of antibiotics, heavy metals, or other environmental contaminants. CONCLUSIONS Our findings suggest a correlation between pollution and the marine sediment microbiome and provide insight into the role of high-turnover microbial communities as well as potential pathogenic organisms as real-time indicators of water quality, with implications for human health and demonstrate the inner functional shifts contributed by the microcommunities.
Collapse
Affiliation(s)
- Jiarui Chen
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China
| | - Shelby E McIlroy
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China
| | - Anand Archana
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China
| | - David M Baker
- Swire Institute of Marine Science, The University of Hong Kong, Hong Kong SAR, China.
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Kadoorie Biological Sciences Building, Pok Fu Lam Road, Hong Kong SAR, China.
| | - Gianni Panagiotou
- Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoll Institute, Beutenbergstrasse 11a, Jena, 07745, Germany.
- Department of Microbiology Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
- Systems Biology & Bioinformatics Group, School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
11
|
Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Appl Biochem Biotechnol 2018; 186:199-216. [PMID: 29552714 DOI: 10.1007/s12010-018-2727-1] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/22/2018] [Indexed: 10/17/2022]
Abstract
Currently, the heavy metal pollution is of grave concern, and the part of microorganism for metal bioremediation should take into account as an efficient and economic strategy. On this framework, the heavy metal stress consequences on exopolysaccharide (EPS)-producing agricultural isolate, Pantoea agglomerans, were studied. The EPS production is a protective response to stress to survive and grow in the metal-contaminated environment. P. agglomerans show tolerance and mucoid growth in the presence of heavy metals, i.e., mercury, copper, silver, arsenic, lead, chromium, and cadmium. EDX first confirmed the metal accumulation and further, FTIR determined the functional groups involved in metal binding. The ICP-AES identified the location of cell-bound and intracellular metal accumulation. Metal deposition on cell surface has released more Ca2+. The effect on bacterial morphology investigated with SEM and TEM revealed the sites of metal accumulation, as well as possible structural changes. Each heavy metal caused distinct change and accumulated on cell-bound EPS with some intracellular deposits. The metal stress caused a decrease in total protein content and increased in total carbohydrate with a boost in EPS. Thus, the performance of P. agglomerans under metal stress indicated a potential candidate for metal bioremediation. Graphical Abstract ᅟ.
Collapse
|
12
|
Guo F, Li B, Yang Y, Deng Y, Qiu JW, Li X, Leung KM, Zhang T. Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong Kong. FEMS Microbiol Ecol 2016; 92:fiw128. [PMID: 27297722 DOI: 10.1093/femsec/fiw128] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2016] [Indexed: 11/14/2022] Open
Abstract
Sulfate-reducing prokaryotes (SRPs) and antibiotic resistance genes (ARGs) in sediments could be biomarkers for evaluating the environmental impacts of human activities, although factors governing their distribution are not clear yet. By using metagenomic approach, this study investigated the distributions of SRPs and ARGs in marine sediments collected from 12 different coastal locations of Hong Kong, which exhibited different pollution levels and were classified into two groups based on sediment parameters. Our results showed that relative abundances of major SRP genera to total prokaryotes were consistently lower in the more seriously polluted sediments (P-value < 0.05 in 13 of 20 genera), indicating that the relative abundance of SRPs is a negatively correlated biomarker for evaluating human impacts. Moreover, a unimodel distribution pattern for SRPs along with the pollution gradient was observed. Although total ARGs were enriched in sediments from the polluted sites, distribution of single major ARG types could be explained neither by individual sediment parameters nor by corresponding concentration of antibiotics. It supports the hypothesis that the persistence of ARGs in sediments may not need the selection of antibiotics. In summary, our study provided important hints of the niche differentiation of SRPs and behavior of ARGs in marine coastal sediment.
Collapse
Affiliation(s)
- Feng Guo
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China School of Life Sciences, Xiamen University, 361100, China
| | - Bing Li
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Graduate School at Shenzhen, Tsinghua University, 518055, China
| | - Ying Yang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China School of Marine Sciences, Sun Yat-sen University, 510006, China
| | - Yu Deng
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jian-Wen Qiu
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Xiangdong Li
- Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Kenneth My Leung
- The Swire Institute of Marine Science and School of Biological Sciences, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
13
|
Dash HR, Das S. Diversity, community structure, and bioremediation potential of mercury-resistant marine bacteria of estuarine and coastal environments of Odisha, India. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:6960-6971. [PMID: 26686519 DOI: 10.1007/s11356-015-5991-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 12/14/2015] [Indexed: 06/05/2023]
Abstract
Both point and non-point sources increase the pollution status of mercury and increase the population of mercury-resistant marine bacteria (MRMB). They can be targeted as the indicator organism to access marine mercury pollution, besides utilization in bioremediation. Thus, sediment and water samples were collected for 2 years (2010-2012) along Odisha coast of Bay of Bengal, India. Mercury content of the study sites varied from 0.47 to 0.99 ppb irrespective of the seasons of sampling. A strong positive correlation was observed between mercury content and MRMB population (P < 0.05) suggesting the utilization of these bacteria to assess the level of mercury pollution in the marine environment. Seventy-eight percent of the MRMB isolates were under the phylum Firmicutes, and 36 and 31% of them could resist mercury by mer operon-mediated volatilization and mercury biosorption, respectively. In addition, most of the isolates could resist a number of antibiotics and toxic metals. All the MRMB isolates possess the potential of growth and survival at cardinal pH (4-8), temperature (25-37 °C), and salinity (5-35 psu). Enterobacteria repetitive intergenic consensus (ERIC) and repetitive element palindromic PCR (REP-PCR) produced fingerprints corroborating the results of 16S rRNA gene sequencing. Fourier transform infrared (FTIR) spectral analysis also revealed strain-level speciation and phylogenetic relationships.
Collapse
Affiliation(s)
- Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
14
|
Scales BS, Erb-Downward JR, Huffnagle IM, LiPuma JJ, Huffnagle GB. Comparative genomics of Pseudomonas fluorescens subclade III strains from human lungs. BMC Genomics 2015; 16:1032. [PMID: 26644001 PMCID: PMC4672498 DOI: 10.1186/s12864-015-2261-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 11/30/2015] [Indexed: 12/22/2022] Open
Abstract
Background While the taxonomy and genomics of environmental strains from the P. fluorescens species-complex has been reported, little is known about P. fluorescens strains from clinical samples. In this report, we provide the first genomic analysis of P. fluorescens strains in which human vs. environmental isolates are compared. Results Seven P. fluorescens strains were isolated from respiratory samples from cystic fibrosis (CF) patients. The clinical strains could grow at a higher temperature (>34 °C) than has been reported for environmental strains. Draft genomes were generated for all of the clinical strains, and multi-locus sequence analysis placed them within subclade III of the P. fluorescens species-complex. All strains encoded type- II, −III, −IV, and -VI secretion systems, as well as the widespread colonization island (WCI). This is the first description of a WCI in P. fluorescens strains. All strains also encoded a complete I2/PfiT locus and showed evidence of horizontal gene transfer. The clinical strains were found to differ from the environmental strains in the number of genes involved in metal resistance, which may be a possible adaptation to chronic antibiotic exposure in the CF lung. Conclusions This is the largest comparative genomics analysis of P. fluorescens subclade III strains to date and includes the first clinical isolates. At a global level, the clinical P. fluorescens subclade III strains were largely indistinguishable from environmental P. fluorescens subclade III strains, supporting the idea that identifying strains as ‘environmental’ vs ‘clinical’ is not a phenotypic trait. Rather, strains within P. fluorescens subclade III will colonize and persist in any niche that provides the requirements necessary for growth. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2261-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Brittan S Scales
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John R Erb-Downward
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Ian M Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - John J LiPuma
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Gary B Huffnagle
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA. .,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
15
|
Williams NJ, Sherlock C, Jones TR, Clough HE, Telfer SE, Begon M, French N, Hart CA, Bennett M. The prevalence of antimicrobial-resistant Escherichia coli in sympatric wild rodents varies by season and host. J Appl Microbiol 2015; 110:962-70. [PMID: 21255210 DOI: 10.1111/j.1365-2672.2011.04952.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the prevalence and temporal patterns of antimicrobial resistance in wild rodents with no apparent exposure to antimicrobials. METHODS AND RESULTS Two sympatric populations of bank voles and wood mice were trapped and individually monitored over a 2- year period for faecal carriage of antimicrobial-resistant Escherichia coli. High prevalences of ampicillin-, chloramphenicol-, tetracycline- and trimethoprim-resistant E. coli were observed. A markedly higher prevalence of antimicrobial-resistant E. coli was found in wood mice than in bank voles, with the prevalence in both increasing over time. Superimposed on this trend was a seasonal cycle with a peak prevalence of resistant E. coli in mice in early- to mid-summer and in voles in late summer and early autumn. CONCLUSIONS These sympatric rodent species had no obvious contact with antimicrobials, and the difference in resistance profiles between rodent species and seasons suggests that factors present in their environment are unlikely to be drivers of such resistance. SIGNIFICANCE AND IMPACT OF THE STUDY These findings suggest that rodents may represent a reservoir of antimicrobial-resistant bacteria, transmissible to livestock and man. Furthermore, such findings have implications for human and veterinary medicine regarding antimicrobial usage and subsequent selection of antimicrobial-resistant organisms.
Collapse
Affiliation(s)
- N J Williams
- National Centre for Zoonosis Research, Institute of Infection and Global Health, University of Liverpool, Cheshire, UK Department of Mathematics and Statistics, Lancaster University, Lancaster, UK Institute of Integrative Biology, University of Liverpool, Liverpool, UK Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK Institute of Veterinary, Animal and Biomedical Sciences, Massey University, Palmerston North, New Zealand School of Host Immunity and Infection, University of Liverpool, Liverpool, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Pinto AB, Pagnocca FC, Pinheiro MAA, Fontes RFC, de Oliveira AJFC. Heavy metals and TPH effects on microbial abundance and diversity in two estuarine areas of the southern-central coast of São Paulo State, Brazil. MARINE POLLUTION BULLETIN 2015; 96:410-417. [PMID: 26021289 DOI: 10.1016/j.marpolbul.2015.04.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 04/02/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
Coastal areas may be impacted by human and industrial activities, including contamination by wastewater, heavy metals and hydrocarbons. This study aimed to evaluate the impact of hydrocarbons (TPH) and metals on the microbiota composition and abundance in two estuarine systems in the coast of São Paulo: the Santos (SE) and Itanhaém (IE) estuaries. The SE was found to be chronically contaminated by heavy metals and highly contaminated by hydrocarbons. This finding was correlated with the increased density of cyanobacteria in sediments and suggests the possible use of cyanobacteria for bioremediation. These contaminants influence the density and composition of estuarine microbiota that respond to stress caused by human activity. The results are troubling because quantitative and qualitative changes in the microbiota of estuarine sediments may alter microbiological processes such as decomposition of organic matter. Moreover, this pollution can result in damage to the environment, biota and human health.
Collapse
Affiliation(s)
- Aline Bartelochi Pinto
- UNESP - São Paulo State University, Institute of Biological Sciences, Rio Claro Campus/Universidade Estadual Paulista, Instituto de Biociências (IB), Campus de Rio Claro, Av. 24A, 1515, Bela Vista, CEP 13506-900 Rio Claro, SP, Brazil.
| | - Fernando Carlos Pagnocca
- UNESP - São Paulo State University, Institute of Biological Sciences, Rio Claro Campus/Universidade Estadual Paulista, Instituto de Biociências (IB), Campus de Rio Claro, Av. 24A, 1515, Bela Vista, CEP 13506-900 Rio Claro, SP, Brazil.
| | - Marcelo Antonio Amaro Pinheiro
- UNESP - São Paulo State University, Experimental Campus on the São Paulo Coast/Universidade Estadual Paulista, Campus Experimental do Litoral Paulista (CLP), Praça Infante Dom Henrique, s/n., Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil
| | - Roberto Fioravanti Carelli Fontes
- UNESP - São Paulo State University, Experimental Campus on the São Paulo Coast/Universidade Estadual Paulista, Campus Experimental do Litoral Paulista (CLP), Praça Infante Dom Henrique, s/n., Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil
| | - Ana Júlia Fernandes Cardoso de Oliveira
- UNESP - São Paulo State University, Experimental Campus on the São Paulo Coast/Universidade Estadual Paulista, Campus Experimental do Litoral Paulista (CLP), Praça Infante Dom Henrique, s/n., Parque Bitaru, CEP 11330-900, São Vicente, SP, Brazil.
| |
Collapse
|
17
|
Riber L, Poulsen PH, Al-Soud WA, Skov Hansen LB, Bergmark L, Brejnrod A, Norman A, Hansen LH, Magid J, Sørensen SJ. Exploring the immediate and long-term impact on bacterial communities in soil amended with animal and urban organic waste fertilizers using pyrosequencing and screening for horizontal transfer of antibiotic resistance. FEMS Microbiol Ecol 2014; 90:206-24. [DOI: 10.1111/1574-6941.12403] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 07/11/2014] [Accepted: 07/13/2014] [Indexed: 01/16/2023] Open
Affiliation(s)
- Leise Riber
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Pernille H.B. Poulsen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Danish Standards Foundation; Charlottenlund Denmark
| | - Waleed A. Al-Soud
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Lea B. Skov Hansen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Lasse Bergmark
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
- National Food Institute; Technical University of Denmark; Lyngby Denmark
| | - Asker Brejnrod
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| | - Anders Norman
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Department of Earth and Planetary Science; University of California Berkeley; Berkeley CA USA
| | - Lars H. Hansen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
- Department of Environmental Science; Aarhus University; Roskilde Denmark
| | - Jakob Magid
- Department of Plant and Environmental Science; University of Copenhagen; Frederiksberg C Denmark
| | - Søren J. Sørensen
- Section of Microbiology; Department of Biology; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
18
|
Figueiredo NLL, Canário J, Duarte A, Serralheiro ML, Carvalho C. Isolation and characterization of mercury-resistant bacteria from sediments of Tagus Estuary (Portugal): implications for environmental and human health risk assessment. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:155-168. [PMID: 24555656 DOI: 10.1080/15287394.2014.867204] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) contamination of aquatic systems has been recognized as a global and serious problem affecting both human and environmental health. In the aquatic ecosystems, mercurial compounds are microbiologically transformed with methylation responsible for generation of methylmercury (MeHg) and subsequent biomagnification in food chain, consequently increasing the risk of poisoning for humans and wildlife. High levels of Hg, especially MeHg, are known to exist in Tagus Estuary as a result of past industrial activities. The aim of this study was to isolate and characterize Hg-resistant bacteria from Tagus Estuary. Mercury-resistant (Hg-R) bacteria were isolated from sediments of two hotspots (Barreiro and North Channel) and one reserve area (Alcochete). Mercury contamination in these areas was examined and bacterial susceptibility to Hg compounds evaluated by determination of minimal inhibitory concentrations (MIC). The isolates characterization was based on morphological observation and biochemical testing. Bacteria characteristics, distribution, and Hg resistance levels were compared with metal levels. Barreiro and North Channel were highly contaminated with Hg, containing 126 and 18 μg/g total Hg, respectively, and in Alcochete, contamination was lower at 0.87 μg/g total Hg. Among the isolates there were aerobic and anaerobic bacteria, namely, sulfate-reducing bacteria, and Hg resistance levels ranged from 0.16 to 140 μg/ml for Hg(2+) and from 0.02 to 50.1 μg/ml for MeHg. The distribution of these bacteria and the resistance levels were consistent with Hg contamination along the depth of the sediments. Overall, results show the importance of the characterization of Tagus Estuary bacteria for ecological and human health risk assessment.
Collapse
MESH Headings
- Bacteria, Aerobic/drug effects
- Bacteria, Aerobic/isolation & purification
- Bacteria, Anaerobic/drug effects
- Bacteria, Anaerobic/isolation & purification
- Chromatography, Gas
- Environmental Health
- Environmental Monitoring
- Estuaries
- Geologic Sediments/chemistry
- Geologic Sediments/microbiology
- Humans
- Mercury/analysis
- Mercury/pharmacology
- Methylmercury Compounds/analysis
- Methylmercury Compounds/pharmacology
- Microbial Sensitivity Tests
- Portugal
- Risk Assessment
- Spectrophotometry, Atomic
- Water Pollutants, Chemical/analysis
- Water Pollutants, Chemical/pharmacology
- Water Pollution, Chemical/adverse effects
- Water Pollution, Chemical/analysis
Collapse
Affiliation(s)
- Neusa L L Figueiredo
- a Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia , Universidade de Lisboa Av. Prof. Gama Pinto , Lisboa , 1649-003 , Portugal
| | | | | | | | | |
Collapse
|
19
|
Caliz J, Montserrat G, Martí E, Sierra J, Cruañas R, Garau MA, Triadó-Margarit X, Vila X. The exposition of a calcareous Mediterranean soil to toxic concentrations of Cr, Cd and Pb produces changes in the microbiota mainly related to differential metal bioavailability. CHEMOSPHERE 2012; 89:494-504. [PMID: 22658943 DOI: 10.1016/j.chemosphere.2012.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2011] [Revised: 04/25/2012] [Accepted: 05/03/2012] [Indexed: 06/01/2023]
Abstract
The involvement of the bacterial community of an agricultural Mediterranean calcareous soil in relation to several heavy metals has been studied in microcosms under controlled laboratory conditions. Soil samples were artificially polluted with Cr(VI), Cd(II) and Pb(II) at concentrations ranging from 0.1 to 5000 mg kg(-1) and incubated along 28 d. The lowest concentrations with significant effects in soil respirometry were 10 mg kg(-1) Cr and 1000 mg kg(-1) Cd and Pb. However, only treatments showing more than 40% inhibition of respirometric activity led to significant changes in bacterial composition, as indicated by PCR-DGGE analyses. Presumable Cr- and Cd-resistant bacteria were detected in polluted microcosms, but development of the microbiota was severely impaired at the highest amendments of both metals. Results also showed that bioavailability is an important factor determining the impact of the heavy metals assayed, and even an inverted potential toxicity ranking could be achieved if their soluble fraction is considered instead of the total concentration. Moreover, multiresistant bacteria were isolated from Cr-polluted soil microcosms, some of them showing the capacity to reduce Cr(VI) concentrations between 26% and 84% of the initial value. Potentially useful strains for bioremediation were related to Arthrobacter crystallopoietes, Stenotrophomonas maltophilia and several species of Bacillus.
Collapse
Affiliation(s)
- Joan Caliz
- Institute of Aquatic Ecology, University of Girona, Avda Montilivi s/n, Girona 17071, Spain
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Li L, Norman A, Hansen L, Sorensen S. Metamobilomics – expanding our knowledge on the pool of plasmid encoded traits in natural environments using high-throughput sequencing. Clin Microbiol Infect 2012; 18 Suppl 4:5-7. [DOI: 10.1111/j.1469-0691.2012.03862.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Handy RD, van den Brink N, Chappell M, Mühling M, Behra R, Dušinská M, Simpson P, Ahtiainen J, Jha AN, Seiter J, Bednar A, Kennedy A, Fernandes TF, Riediker M. Practical considerations for conducting ecotoxicity test methods with manufactured nanomaterials: what have we learnt so far? ECOTOXICOLOGY (LONDON, ENGLAND) 2012; 21:933-72. [PMID: 22422174 PMCID: PMC3325413 DOI: 10.1007/s10646-012-0862-y] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/28/2012] [Indexed: 05/18/2023]
Abstract
This review paper reports the consensus of a technical workshop hosted by the European network, NanoImpactNet (NIN). The workshop aimed to review the collective experience of working at the bench with manufactured nanomaterials (MNMs), and to recommend modifications to existing experimental methods and OECD protocols. Current procedures for cleaning glassware are appropriate for most MNMs, although interference with electrodes may occur. Maintaining exposure is more difficult with MNMs compared to conventional chemicals. A metal salt control is recommended for experiments with metallic MNMs that may release free metal ions. Dispersing agents should be avoided, but if they must be used, then natural or synthetic dispersing agents are possible, and dispersion controls essential. Time constraints and technology gaps indicate that full characterisation of test media during ecotoxicity tests is currently not practical. Details of electron microscopy, dark-field microscopy, a range of spectroscopic methods (EDX, XRD, XANES, EXAFS), light scattering techniques (DLS, SLS) and chromatography are discussed. The development of user-friendly software to predict particle behaviour in test media according to DLVO theory is in progress, and simple optical methods are available to estimate the settling behaviour of suspensions during experiments. However, for soil matrices such simple approaches may not be applicable. Alternatively, a Critical Body Residue approach may be taken in which body concentrations in organisms are related to effects, and toxicity thresholds derived. For microbial assays, the cell wall is a formidable barrier to MNMs and end points that rely on the test substance penetrating the cell may be insensitive. Instead assays based on the cell envelope should be developed for MNMs. In algal growth tests, the abiotic factors that promote particle aggregation in the media (e.g. ionic strength) are also important in providing nutrients, and manipulation of the media to control the dispersion may also inhibit growth. Controls to quantify shading effects, and precise details of lighting regimes, shaking or mixing should be reported in algal tests. Photosynthesis may be more sensitive than traditional growth end points for algae and plants. Tests with invertebrates should consider non-chemical toxicity from particle adherence to the organisms. The use of semi-static exposure methods with fish can reduce the logistical issues of waste water disposal and facilitate aspects of animal husbandry relevant to MMNs. There are concerns that the existing bioaccumulation tests are conceptually flawed for MNMs and that new test(s) are required. In vitro testing strategies, as exemplified by genotoxicity assays, can be modified for MNMs, but the risk of false negatives in some assays is highlighted. In conclusion, most protocols will require some modifications and recommendations are made to aid the researcher at the bench.
Collapse
Affiliation(s)
- Richard D Handy
- Ecotoxicology Research and Innovation Centre, School of Biomedical & Biological Sciences, University of Plymouth, Plymouth, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Gomes NC, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LC, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010. [DOI: 10.1111/j.1574-6941.2010.00962.x 276-290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
23
|
Gomes NCM, Flocco CG, Costa R, Junca H, Vilchez R, Pieper DH, Krögerrecklenfort E, Paranhos R, Mendonça-Hagler LCS, Smalla K. Mangrove microniches determine the structural and functional diversity of enriched petroleum hydrocarbon-degrading consortia. FEMS Microbiol Ecol 2010; 74:276-90. [PMID: 20812953 DOI: 10.1111/j.1574-6941.2010.00962.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this study, the combination of culture enrichments and molecular tools was used to identify bacterial guilds, plasmids and functional genes potentially important in the process of petroleum hydrocarbon (PH) decontamination in mangrove microniches (rhizospheres and bulk sediment). In addition, we aimed to recover PH-degrading consortia (PHDC) for future use in remediation strategies. The PHDC were enriched with petroleum from rhizosphere and bulk sediment samples taken from a mangrove chronically polluted with oil hydrocarbons. Southern blot hybridization (SBH) assays of PCR amplicons from environmental DNA before enrichments resulted in weak positive signals for the functional gene types targeted, suggesting that PH-degrading genotypes and plasmids were in low abundance in the rhizosphere and bulk sediments. However, after enrichment, these genes were detected and strong microniche-dependent differences in the abundance and composition of hydrocarbonoclastic bacterial populations, plasmids (IncP-1α, IncP-1β, IncP-7 and IncP-9) and functional genes (naphthalene, extradiol and intradiol dioxygenases) were revealed by in-depth molecular analyses [PCR-denaturing gradient gel electrophoresis and hybridization (SBH and microarray)]. Our results suggest that, despite the low abundance of PH-degrading genes and plasmids in the environmental samples, the original bacterial composition of the mangrove microniches determined the structural and functional diversity of the PHDC enriched.
Collapse
Affiliation(s)
- Newton C M Gomes
- CESAM and Department of Biology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Pringault O, Viret H, Duran R. Influence of microorganisms on the removal of nickel in tropical marine sediments (New Caledonia). MARINE POLLUTION BULLETIN 2010; 61:530-541. [PMID: 20659749 DOI: 10.1016/j.marpolbul.2010.06.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The removal of nickel in marine tropical sediments (New Caledonia) was studied in microcosms. Removal of Ni(2+) was strongly enhanced by the presence of bacteria, with rates up to twofold higher than those observed under sterilized conditions. After 8 days of incubation, Ni(2+) concentration in the water column ranged from 30% to 50% of the initial concentration according to sediment origin. Addition of glucose stimulated bacterial processes and resulted in a complete disappearance of Ni(2+) in the water phase. Incubation under anoxic conditions slightly affects the microbial structure inferred from T-RFLP analysis irrespective of Ni(2+) spiking, whereas incubation under oxic conditions resulted to moderate modification of the microbial structure, changes that might be more marked in the presence of Ni(2+). Five different T-RFs were observed in almost all microcosms with relative abundance between 5% and 30%. Incubation with glucose resulted in the dominance of a common T-RF, with relative abundance up to 39%.
Collapse
Affiliation(s)
- Olivier Pringault
- Unité de Recherche 103, Centre IRD de Nouméa, Promenade Roger Laroque, BP A5 98848 Nouméa Cedex, Nouvelle Calédonie, France
| | | | | |
Collapse
|
25
|
Skurnik D, Ruimy R, Ready D, Ruppe E, Bernède-Bauduin C, Djossou F, Guillemot D, Pier GB, Andremont A. Is exposure to mercury a driving force for the carriage of antibiotic resistance genes? J Med Microbiol 2010; 59:804-807. [PMID: 20339018 DOI: 10.1099/jmm.0.017665-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The mercury resistance gene merA has often been found together with antibiotic resistance genes in human commensal Escherichia coli. To study this further, we analysed mercury resistance in collections of strains from various populations with different levels of mercury exposure and various levels of antibiotic resistance. The first population lived in France and had no known mercury exposure. The second lived in French Guyana and included a group of Wayampi Amerindians with a known high exposure to mercury. Carriage rates of mercury resistance were assessed by measuring the MIC and by detecting the merA gene. Mercury-resistant E. coli was found significantly more frequently in the populations that had the highest carriage rates of antibiotic-resistant E. coli and in parallel antibiotic resistance was higher in the population living in an environment with a high exposure to mercury, suggesting a possible co-selection. Exposure to mercury might be a specific driving force for the acquisition and maintenance of mobile antibiotic resistance gene carriage in the absence of antibiotic selective pressure.
Collapse
Affiliation(s)
- David Skurnik
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.,EA3964 Résistance Bactérienne in Vivo, Faculté de Médecine, Université Paris-Diderot and Hôpital Bichat-Claude Bernard, CNR Résistance Bactérienne dans les Flores Commensales, APHP, 75018 Paris, France
| | - Raymond Ruimy
- EA3964 Résistance Bactérienne in Vivo, Faculté de Médecine, Université Paris-Diderot and Hôpital Bichat-Claude Bernard, CNR Résistance Bactérienne dans les Flores Commensales, APHP, 75018 Paris, France
| | - Derren Ready
- Eastman Dental Hospital, UCLH NHS Foundation Trust, 256 Gray's Inn Road, London, UK
| | - Etienne Ruppe
- EA3964 Résistance Bactérienne in Vivo, Faculté de Médecine, Université Paris-Diderot and Hôpital Bichat-Claude Bernard, CNR Résistance Bactérienne dans les Flores Commensales, APHP, 75018 Paris, France
| | | | - Felix Djossou
- Equipe de Recherche EA 3593, Centre Hospitalier de Cayenne, BP 6006, F-97306 Cayenne, French Guyana
| | - Didier Guillemot
- Eastman Dental Hospital, UCLH NHS Foundation Trust, 256 Gray's Inn Road, London, UK
| | - Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Antoine Andremont
- EA3964 Résistance Bactérienne in Vivo, Faculté de Médecine, Université Paris-Diderot and Hôpital Bichat-Claude Bernard, CNR Résistance Bactérienne dans les Flores Commensales, APHP, 75018 Paris, France
| |
Collapse
|
26
|
Mühling M, Bradford A, Readman JW, Somerfield PJ, Handy RD. An investigation into the effects of silver nanoparticles on antibiotic resistance of naturally occurring bacteria in an estuarine sediment. MARINE ENVIRONMENTAL RESEARCH 2009; 68:278-283. [PMID: 19665221 DOI: 10.1016/j.marenvres.2009.07.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2009] [Revised: 06/17/2009] [Accepted: 07/03/2009] [Indexed: 05/28/2023]
Abstract
The aim of this study was to test whether silver nanoparticles (Ag-NPs) released into estuarine environments result in increased antibiotic resistance amongst the natural bacterial population in estuarine sediments. A 50-day microcosm exposure experiment was carried out to investigate the effects of Ag-NPs (50 nm average diameter) on the antibiotic resistance of bacteria in sediments from an estuary in southwest England. Experimental microcosms were constructed using 3.5 kg sediment cores with 20 l of overlaying seawater treated with (final) Ag-NPs concentrations of 0, 50 or 2000 microg l(-1) (n=3). Sediment samples were screened at the end of the exposure period for the presence of bacteria resistant to eight different antibiotics. Multivariate statistical analyses showed that there was no increase in antibiotic resistance amongst the bacterial population in the sediment due to the dosing of the microcosms with Ag-NPs. This study indicates that, under the tested conditions, Ag-NPs released into the coastal marine environment do not increase antibiotic resistance among naturally occurring bacteria in estuarine sediments. These results contrast previous findings where antimicrobial effects of Ag-NPs on key bacterial species in laboratory experiments have been demonstrated, and reasons for this are discussed. The negligible effects demonstrated on bacterial populations under the selected estuarine conditions, provide important information on no observed effect concentrations (NOECs) for environmental regulation.
Collapse
Affiliation(s)
- Martin Mühling
- Plymouth Marine Laboratory, Prospect Place, The Hoe, Plymouth PL1 3DH, UK.
| | | | | | | | | |
Collapse
|
27
|
Altug G, Balkis N. Levels of some toxic elements and frequency of bacterial heavy metal resistance in sediment and sea water. ENVIRONMENTAL MONITORING AND ASSESSMENT 2009; 149:61-69. [PMID: 18266065 DOI: 10.1007/s10661-008-0183-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 01/14/2008] [Indexed: 05/25/2023]
Abstract
The Golden Horn Estuary located in the Istanbul region of Turkey has been thought to be a heavily polluted area since the 1950s: the concentration of the elements, which include heavy metals such as Cu2+, Mn2+, Ni2+, Zn2+, Pb2+, Cd2+, and Fe2+, was therefore investigated in sediment and water samples of the area. The resistance of Enterobacteriaceae members to some heavy metal salts was investigated to determine levels of metal-resistant bacteria in the Golden Horn Estuary after the environmental restoration project in 1998. The sediment samples were collected with an Ekman-Grab in the period from November 2002 to February 2004 from depths of 4-15 m and analyzed by means of an atomic absorption spectrophotometer. Analyses of average heavy metals of sediment samples yielded the following results: 131.5 ppm Cu, 405.5 ppm Mn, 46.5 ppm Ni, 191.2 ppm Zn, 81.5 ppm Pb and 27668 ppm Fe. As with water, Ni concentrations in sediment were found lower than that in limit values. Frequency of heavy metals resistance to Cu, Zn, Fe, Ni, Mn, Pb and Cd was detected as an average of 65.0%, 64.4%, 62.5%, 38.4%, 37.3%, 36.2% and 28.4%, respectively in a total of 192 strains isolated from sediment samples. It was observed that there was no statistically significant difference among the results of analyses with respect to sampling dates. Despite the environmental restoration project in 1998, our study results showed that heavy metal levels were still high in the sediment and this situation induced the tolerance of bacteria to some heavy metals.
Collapse
Affiliation(s)
- Gulsen Altug
- Department of Marine Biology, Faculty of Fisheries, Istanbul University, Istanbul, Turkey.
| | | |
Collapse
|
28
|
Rose JM, Gast RJ, Bogomolni A, Ellis JC, Lentell BJ, Touhey K, Moore M. Occurrence and patterns of antibiotic resistance in vertebrates off the Northeastern United States coast. FEMS Microbiol Ecol 2009; 67:421-31. [PMID: 19187217 DOI: 10.1111/j.1574-6941.2009.00648.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The prevalence of antibiotic-resistant bacteria in the marine environment is a growing concern, but the degree to which marine mammals, seabirds and fish harbor these organisms is not well documented. This project sought to identify the occurrence and patterns of antibiotic resistance in bacteria isolated from vertebrates of coastal waters in the northeastern United States. Four hundred and seventy-two isolates of clinical interest were tested for resistance to a suite of 16 antibiotics. Fifty-eight percent were resistant to at least one antibiotic, while 43% were resistant to multiple antibiotics. A multiple antibiotic resistance index value >or=0.2 was observed in 38% of the resistant pathogens, suggesting exposure of the animals to bacteria from significantly contaminated sites. Groups of antibiotics were identified for which bacterial resistance commonly co-occurred. Antibiotic resistance was more widespread in bacteria isolated from seabirds than marine mammals, and was more widespread in stranded or bycaught marine mammals than live marine mammals. Structuring of resistance patterns based on sample type (live/stranded/bycaught) but not animal group (mammal/bird/fish) was observed. These data indicate that antibiotic resistance is widespread in marine vertebrates, and they may be important reservoirs of antibiotic-resistant bacteria in the marine environment.
Collapse
Affiliation(s)
- Julie M Rose
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | | | | | | | | | |
Collapse
|
29
|
Zhang XX, Zhang T, Fang HHP. Antibiotic resistance genes in water environment. Appl Microbiol Biotechnol 2009; 82:397-414. [PMID: 19130050 DOI: 10.1007/s00253-008-1829-z] [Citation(s) in RCA: 586] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2008] [Revised: 12/11/2008] [Accepted: 12/13/2008] [Indexed: 12/30/2022]
Abstract
The use of antibiotics may accelerate the development of antibiotic resistance genes (ARGs) and bacteria which shade health risks to humans and animals. The emerging of ARGs in the water environment is becoming an increasing worldwide concern. Hundreds of various ARGs encoding resistance to a broad range of antibiotics have been found in microorganisms distributed not only in hospital wastewaters and animal production wastewaters, but also in sewage, wastewater treatment plants, surface water, groundwater, and even in drinking water. This review summarizes recently published information on the types, distributions, and horizontal transfer of ARGs in various aquatic environments, as well as the molecular methods used to detect environmental ARGs, including specific and multiplex PCR (polymerase chain reaction), real-time PCR, DNA sequencing, and hybridization based techniques.
Collapse
Affiliation(s)
- Xu-Xiang Zhang
- Environmental Biotechnology Lab,Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| | | | | |
Collapse
|
30
|
Comparative effects of mercury contamination and wastewater effluent input on Gram-negative merA gene abundance in mudflats of an anthropized estuary (Seine, France): a microcosm approach. Res Microbiol 2009; 160:10-8. [DOI: 10.1016/j.resmic.2008.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 10/02/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
|
31
|
Toes ACM, Finke N, Kuenen JG, Muyzer G. Effects of deposition of heavy-metal-polluted harbor mud on microbial diversity and metal resistance in sandy marine sediments. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2008; 55:372-85. [PMID: 18273665 DOI: 10.1007/s00244-008-9135-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 01/21/2008] [Indexed: 05/22/2023]
Abstract
Deposition of dredged harbor sediments in relatively undisturbed ecosystems is often considered a viable option for confinement of pollutants and possible natural attenuation. This study investigated the effects of deposition of heavy-metal-polluted sludge on the microbial diversity of sandy sediments during 12 months of mesocosm incubation. Geochemical analyses showed an initial increase in pore-water metal concentrations, which subsided after 3 months of incubation. No influence of the deposited sediment was observed in denaturing gradient gel electrophoresis (DGGE) profiles of bacterial 16S rRNA genes, whereas a minor, transient impact on the archaeal community was revealed. Phylogenetic analyses of bacterial 16S rRNA clone libraries showed an abundance of members of the Flavobacteriaceae, the alpha- and gamma-Proteobacteria, in both the muddy and the sandy sediments. Despite the finding that some groups of clones were shared between the metal-impacted sandy sediment and the harbor control, comparative analyses showed that the two sediments were significantly different in community composition. Consequences of redeposition of metal-polluted sediment were primarily underlined with cultivation-dependent techniques. Toxicity tests showed that the percentage of Cd- and Cu-tolerant aerobic heterotrophs was highest among isolates from the sandy sediment with metal-polluted mud on top.
Collapse
MESH Headings
- Bacteria, Aerobic/drug effects
- Bacteria, Aerobic/genetics
- Bacteria, Aerobic/growth & development
- DNA, Archaeal/genetics
- Drug Resistance, Bacterial
- Electrophoresis, Agar Gel
- Environmental Pollutants/analysis
- Environmental Pollutants/toxicity
- Genetic Variation
- Geologic Sediments/chemistry
- Geologic Sediments/microbiology
- Metals, Heavy/analysis
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Ann-Charlotte M Toes
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, NL-2628, BC, Delft, The Netherlands
| | | | | | | |
Collapse
|
32
|
Schwaiger K, Schmied EMV, Bauer J. Comparative Analysis of Antibiotic Resistance Characteristics of Gram-negative Bacteria Isolated from Laying Hens and Eggs in Conventional and Organic Keeping Systems in Bavaria, Germany. Zoonoses Public Health 2008; 55:331-41. [DOI: 10.1111/j.1863-2378.2008.01151.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Rahman MH, Nonaka L, Tago R, Suzuki S. Occurrence of two genotypes of tetracycline (TC) resistance gene tet(M) in the TC-resistant bacteria in marine sediments of Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5055-5061. [PMID: 18754347 DOI: 10.1021/es702986y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The tetracycline (TC) resistance gene tet(M) was monitored in bacteria isolated from Japanese coastal and off-shore marine sediments. The high rate of occurrence of TC resistant (TC(r)) bacteria (120 microg mL(-1) TC) was observed at frequency ranges between 0.0-0.08% in Tokyo Bay, 1.67-1.82% in Sagami Bay and 0.0-4.35% in the open Pacific Ocean. The tet(M) gene was PCR amplified from the TC(r) isolates, showing 127 of 209 isolates (60.8%) as positive. The rate of occurrence of tet(M) was between 32.0-96.0%, 21.1 -28.0% and 0.0-83.3% in the isolates from Tokyo Bay, Sagami Bay and the open Pacific Ocean, respectively. The tet(M) positive isolates belonged to 4 orders of bacteria. Bacillales was the most dominant order (121 strains) among tet(M) possessing bacteria, followed by Actinomycetales (three strains), Flavobacteriales (one strain) and Pseudomonadales (one strain). This indicates that tet(M) is present in various bacterial species and suggests that marine sediments are a natural reservoir of the tet(M) gene. Nucleotide sequence of the tet(M) revealed that two genotypes of tet(M) were found in the bacteria. The two genotypes were placed in genetically distant branches of the phylogenetic tree, suggesting that the two tet(M)s have different origins.
Collapse
Affiliation(s)
- M Habibur Rahman
- Center for Marine Environmental Studies, Ehime University, Matsuyama 790-8577, Japan
| | | | | | | |
Collapse
|
34
|
De J, Ramaiah N, Vardanyan L. Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2008; 10:471-7. [PMID: 18288535 DOI: 10.1007/s10126-008-9083-z] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Accepted: 01/09/2008] [Indexed: 05/17/2023]
Abstract
Pollution in industrial areas is a serious environmental concern, and interest in bacterial resistance to heavy metals is of practical significance. Mercury (Hg), Cadmium (Cd), and lead (Pb) are known to cause damage to living organisms, including human beings. Several marine bacteria highly resistant to mercury (BHRM) capable of growing at 25 ppm (mg L(-1)) or higher concentrations of mercury were tested during this study to evaluate their potential to detoxify Cd and Pb. Results indicate their potential of detoxification not only of Hg, but also Cd and Pb. Through biochemical and 16S rRNA gene sequence analyses, these bacteria were identified to belong to Alcaligenes faecalis (seven isolates), Bacillus pumilus (three isolates), Bacillus sp. (one isolate), Pseudomonas aeruginosa (one isolate), and Brevibacterium iodinium (one isolate). The mechanisms of heavy metal detoxification were through volatilization (for Hg), putative entrapment in the extracellular polymeric substance (for Hg, Cd and Pb) as revealed by the scanning electron microscopy and energy dispersive x-ray spectroscopy, and/or precipitation as sulfide (for Pb). These bacteria removed more than 70% of Cd and 98% of Pb within 72 and 96 h, respectively, from growth medium that had initial metal concentrations of 100 ppm. Their detoxification efficiency for Hg, Cd and Pb indicates good potential for application in bioremediation of toxic heavy metals.
Collapse
Affiliation(s)
- Jaysankar De
- National Institute of Oceanography, Dona Paula, Goa, India.
| | | | | |
Collapse
|
35
|
Ramond JB, Berthe T, Lafite R, Deloffre J, Ouddane B, Petit F. Relationships between hydrosedimentary processes and occurrence of mercury-resistant bacteria (merA) in estuary mudflats (Seine, France). MARINE POLLUTION BULLETIN 2008; 56:1168-1176. [PMID: 18381217 DOI: 10.1016/j.marpolbul.2008.02.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Revised: 02/08/2008] [Accepted: 02/12/2008] [Indexed: 05/26/2023]
Abstract
The Seine estuary (France) is one of the world's macrotidal systems that is most contaminated with heavy metals. To study the mercury-resistant bacterial community in such an environment, we have developed a molecular tool, based on competitive PCR, enabling the quantification of Gram-negative merA gene abundance. The occurrence of the Gram-negative merA gene in relation with the topology (erosion/deposit periods) and the mercury contamination of three contrasted mudflats was investigated through a multidisciplinary approach and compared with a non-anthropized site (Authie, France). The higher abundance of the Gram-negative merA gene in the Seine estuary mudflats indicates a relationship between the degree of anthropization and the abundance of the merA gene in the mudflat sediments. In the Seine mudflats, the maxima of abundance are always located in fresh sediment deposits. Therefore, the abundance is closely related with the hydrosedimentary processes, which thus seem to be determining factors in the occurrence of the Gram-negative merA gene in the surface sediments of the Seine's mudflat.
Collapse
Affiliation(s)
- Jean-Baptiste Ramond
- Université de Rouen - CNRS UMR 6143, Morphodynamique Continentale et Côtière (M2C), Groupe de Microbiologie, 76821 Mont Saint Aignan Cedex, France
| | | | | | | | | | | |
Collapse
|
36
|
Slater FR, Bruce KD, Ellis RJ, Lilley AK, Turner SL. Heterogeneous selection in a spatially structured environment affects fitness tradeoffs of plasmid carriage in pseudomonads. Appl Environ Microbiol 2008; 74:3189-97. [PMID: 18378654 PMCID: PMC2394952 DOI: 10.1128/aem.02383-07] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2007] [Accepted: 03/21/2008] [Indexed: 11/20/2022] Open
Abstract
Environmental conditions under which fitness tradeoffs of plasmid carriage are balanced to facilitate plasmid persistence remain elusive. Periodic selection for plasmid-encoded traits due to the spatial and temporal variation typical in most natural environments (such as soil particles, plant leaf and root surfaces, gut linings, and the skin) may play a role. However, quantification of selection pressures and their effects is difficult at a scale relevant to the bacterium in situ. The present work describes a novel experimental system for such fine-scale quantification, with conditions designed to mimic the mosaic of spatially variable selection pressures present in natural surface environments. The effects of uniform and spatially heterogeneous mercuric chloride (HgCl(2)) on the dynamics of a model community of plasmid-carrying, mercury-resistant (Hg(r)) and plasmid-free, mercury-sensitive (Hg(s)) pseudomonads were compared. Hg resulted in an increase in the surface area occupied by, and therefore an increase in the fitness of, Hg(r) bacteria relative to Hg(s) bacteria. Uniform and heterogeneous Hg distributions were demonstrated to result in different community structures by epifluorescence microscopy, with heterogeneous Hg producing spatially variable selection landscapes. The effects of heterogeneous Hg were only apparent at scales of a few hundred micrometers, emphasizing the importance of using appropriate analysis methods to detect effects of environmental heterogeneity on community dynamics. Heterogeneous Hg resulted in negative frequency-dependent selection for Hg(r) cells, suggesting that sporadic selection may facilitate the discontinuous distribution of plasmids through host populations in complex, structured environments.
Collapse
Affiliation(s)
- Frances R Slater
- The Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, United Kingdom
| | | | | | | | | |
Collapse
|
37
|
High diversity of bacterial mercuric reductase genes from surface and sub-surface floodplain soil (Oak Ridge, USA). ISME JOURNAL 2007; 1:453-67. [PMID: 18043664 DOI: 10.1038/ismej.2007.56] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DNA was extracted from different depth soils (0-5, 45-55 and 90-100 cm below surface) sampled at Lower East Fork Poplar Creek floodplain (LEFPCF), Oak Ridge (TN, USA). The presence of merA genes, encoding the mercuric reductase, the key enzyme in detoxification of mercury in bacteria, was examined by PCR targeting Actinobacteria, Firmicutes or beta/gamma-Proteobacteria. beta/gamma-Proteobacteria merA genes were successfully amplified from all soils, whereas Actinobacteria were amplified only from surface soil. merA clone libraries were constructed and sequenced. beta/gamma-Proteobacteria sequences revealed high diversity in all soils, but limited vertical similarity. Less than 20% of the operational taxonomic units (OTU) (DNA sequences > or = 95% identical) were shared between the different soils. Only one of the 62 OTU was > or = 95% identical to a GenBank sequence, highlighting that cultivated bacteria are not representative of what is found in nature. Fewer merA sequences were obtained from the Actinobacteria, but these were also diverse, and all were different from GenBank sequences. A single clone was most closely related to merA of alpha-Proteobacteria. An alignment of putative merA genes of genome sequenced mainly marine alpha-Proteobacteria was used for design of merA primers. PCR amplification of soil alpha-Proteobacteria isolates and sequencing revealed that they were very different from the genome-sequenced bacteria (only 62%-66% identical at the amino-acid level), although internally similar. In light of the high functional diversity of mercury resistance genes and the limited vertical distribution of shared OTU, we discuss the role of horizontal gene transfer as a mechanism of bacterial adaptation to mercury.
Collapse
|
38
|
Ready D, Pratten J, Mordan N, Watts E, Wilson M. The effect of amalgam exposure on mercury- and antibiotic-resistant bacteria. Int J Antimicrob Agents 2007; 30:34-9. [PMID: 17459664 DOI: 10.1016/j.ijantimicag.2007.02.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 02/13/2007] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance genes can be found on the same mobile genetic elements as genes coding for resistance to metals such as mercury (Hg). Amalgam restorations contain ca. 50% Hg and, therefore, it could be expected that exposure to such dental restorative materials may promote Hg resistance and thereby antibiotic resistance. An in vitro biofilm model was used to grow microcosm dental plaques on enamel or amalgam substrata. The number and proportion of Hg-resistant organisms over time were determined by viable counts. Microcosm dental plaques grown in the presence of amalgam had a higher number and proportion of Hg-resistant bacteria than those grown on enamel. The levels of these Hg-resistant bacteria remained elevated for a period of 48 h, however after 72 h the proportions returned to baseline levels. Of the 42 Hg-resistant bacteria isolated, 98% were streptococci, with Streptococcus mitis predominating. A high proportion of the Hg-resistant isolates (71%) were also resistant to a range of antibiotics, with resistance to tetracycline being encountered most frequently. The results of this in vitro study indicate that placement of amalgam restorations may play a role in promoting the levels of Hg- and antibiotic-resistant bacteria present in the oral cavity.
Collapse
Affiliation(s)
- Derren Ready
- Eastman Dental Hospital, UCLH NHS Foundation Trust, 256 Gray's Inn Road, London WC1X 8LD, UK.
| | | | | | | | | |
Collapse
|
39
|
Johnsen AR, Kroer N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol Ecol 2006; 59:718-28. [PMID: 17100984 DOI: 10.1111/j.1574-6941.2006.00230.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selection pressure may affect the horizontal transfer of plasmids. The inability to distinguish between gene transfer and the growth of transconjugants complicates testing. We have developed a method that enables the quantification of discrete transfer events. It uses large numbers of replicate matings (192 or 384) in microtiter wells and the counting of transfer-positive and transfer-negative wells. We applied the method to study the transfer of the IncP1 plasmid pRO103 between Escherichia coli and Pseudomonas putida strains. pRO103 encodes resistance to mercury and tetracycline and partial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The results showed positive correlation between transfer and donor metabolic activity, and an optimal temperature for transfer of 29 degrees C. On stimulation of donor activity, the optimal temperature was decreased to 24.5 degrees C. HgCl(2) above 1.0 microg L(-1) negatively affected transfer, whereas 2,4-D up to 0.3 mM had no effect. The negative effect of mercury was shown to be a result of stressing of the recipient. No effects of mercury on transfer could be detected by traditional filter mating. Thus, the method is superior to filter mating and, as the experimental design allows the manipulation of individual parameters, it is ideal for the assessment and comparison of effects of environmental factors on plasmid transfer.
Collapse
Affiliation(s)
- Anders R Johnsen
- National Environmental Research Institute, Department of Environmental Chemistry and Microbiology, Roskilde, Denmark
| | | |
Collapse
|
40
|
Wright MS, Loeffler Peltier G, Stepanauskas R, McArthur JV. Bacterial tolerances to metals and antibiotics in metal-contaminated and reference streams. FEMS Microbiol Ecol 2006; 58:293-302. [PMID: 17064270 DOI: 10.1111/j.1574-6941.2006.00154.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Anthropogenic-derived sources of selection are typically implicated as mechanisms for maintaining antibiotic resistance in the environment. Here we report an additional mechanism for maintaining antibiotic resistance in the environment through bacterial exposure to metals. Using a culture-independent approach, bacteria sampled along a gradient of metal contamination were more tolerant of antibiotics and metals compared to bacteria from a reference site. This evidence supports the hypothesis that metal contamination directly selects for metal tolerant bacteria while co-selecting for antibiotic tolerant bacteria. Additionally, to assess how antibiotic and metal tolerance may be transported through a stream network, we studied antibiotic and metal tolerance patterns over three months in bacteria collected from multiple stream microhabitats including the water column, biofilm, sediment and Corbicula fluminea (Asiatic clam) digestive tracts. Sediment bacteria were the most tolerant to antibiotics and metals, while bacteria from Corbicula were the least tolerant. Differences between microhabitats may be important for identifying reservoirs of resistance and for predicting how these genes are transferred and transported in metal-contaminated streams. Temporal dynamics were not directly correlated to a suite of physicochemical parameters, suggesting that tolerance patterns within microhabitats are linked to a complex interaction of the physicochemical characteristics of the stream.
Collapse
Affiliation(s)
- Meredith S Wright
- University of Georgia, Savannah River Ecology Laboratory, Aiken, SC 29802, USA.
| | | | | | | |
Collapse
|
41
|
Ní Chadhain SM, Schaefer JK, Crane S, Zylstra GJ, Barkay T. Analysis of mercuric reductase (merA) gene diversity in an anaerobic mercury-contaminated sediment enrichment. Environ Microbiol 2006; 8:1746-52. [PMID: 16958755 DOI: 10.1111/j.1462-2920.2006.01114.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The reduction of ionic mercury to elemental mercury by the mercuric reductase (MerA) enzyme plays an important role in the biogeochemical cycling of mercury in contaminated environments by partitioning mercury to the atmosphere. This activity, common in aerobic environments, has rarely been examined in anoxic sediments where production of highly toxic methylmercury occurs. Novel degenerate PCR primers were developed which span the known diversity of merA genes in Gram-negative bacteria and amplify a 285 bp fragment at the 3' end of merA. These primers were used to create a clone library and to analyse merA diversity in an anaerobic sediment enrichment collected from a mercury-contaminated site in the Meadowlands, New Jersey. A total of 174 sequences were analysed, representing 71 merA phylotypes and four novel MerA clades. This first examination of merA diversity in anoxic environments suggests an untapped resource for novel merA sequences.
Collapse
Affiliation(s)
- Sinéad M Ní Chadhain
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | | | | | | | | |
Collapse
|
42
|
Huddleston JR, Zak JC, Jeter RM. Antimicrobial susceptibilities of Aeromonas spp. isolated from environmental sources. Appl Environ Microbiol 2006; 72:7036-42. [PMID: 16950901 PMCID: PMC1636150 DOI: 10.1128/aem.00774-06] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aeromonas spp. are ubiquitous aquatic bacteria that cause serious infections in both poikilothermic and endothermic animals, including humans. Clinical isolates have shown an increasing incidence of antibiotic and antimicrobial drug resistance since the widespread use of antibiotics began. A total of 282 Aeromonas pure cultures were isolated from both urban and rural playa lakes in the vicinity of Lubbock, Texas, and several rivers in West Texas and New Mexico. Of these, at least 104 were subsequently confirmed to be independent isolates. The 104 isolates were identified by Biolog and belonged to 11 different species. The MICs of six metals, one metalloid, five antibiotics, and two antimicrobial drugs were determined. All aeromonads were sensitive to chromate, cobalt, copper, nickel, zinc, cefuroxime, kanamycin, nalidixic acid, ofloxacin, tetracycline, and sulfamethoxazole. Low incidences of trimethoprim resistance, mercury resistance, and arsenite resistance were found. Dual resistances were found in 5 of the 104 Aeromonas isolates. Greater numbers of resistant isolates were obtained from samples taken in March versus July 2002 and from sediment versus water. Plasmids were isolated from selected strains of the arsenite- and mercury-resistant organisms and were transformed into Escherichia coli XL1-Blue MRF'. Acquisition of the resistance phenotypes by the new host showed that these resistance genes were carried on the plasmids. Mercury resistance was found to be encoded on a conjugative plasmid. Despite the low incidence of resistant isolates, the six playa lakes and three rivers that were sampled in this study can be considered a reservoir for antimicrobial resistance genes.
Collapse
Affiliation(s)
- Jennifer R Huddleston
- Department of Biological Sciences, Box 43131, Texas Tech University, Lubbock, TX 79409-3131, USA.
| | | | | |
Collapse
|
43
|
Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, King CJ, McArthur JV. Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environ Microbiol 2006; 8:1510-4. [PMID: 16913911 DOI: 10.1111/j.1462-2920.2006.01091.x] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bacterial resistances to diverse metals and antibiotics are often genetically linked, suggesting that exposure to toxic metals may select for strains resistant to antibiotics and vice versa. To test the hypothesis that resistances to metals and antibiotics are coselected for in environmental microbial assemblages, we investigated the frequency of diverse resistances in freshwater microcosms amended with Cd, Ni, ampicillin or tetracycline. We found that all four toxicants significantly increased the frequency of bacterioplankton resistance to multiple, chemically unrelated metals and antibiotics. An ampicillin-resistant strain of the opportunistic human pathogen Ralstonia mannitolilytica was enriched in microcosms amended with Cd. Frequencies of antibiotic resistance were elevated in microcosms with metal concentrations representative of industry and mining-impacted environments (0.01-1 mM). Metal but not antibiotic amendments decreased microbial diversity, and a weeklong exposure to high concentrations of ampicillin (0.01-10 mg l-1) and tetracycline (0.03-30 mg l-1) decreased microbial abundance only slightly, implying a large reservoir of antibiotic resistance in the studied environment. Our results provide first experimental evidence that the exposure of freshwater environments to individual metals and antibiotics selects for multiresistant microorganisms, including opportunistic human pathogens.
Collapse
|
44
|
Webster NS, Negri AP. Site-specific variation in Antarctic marine biofilms established on artificial surfaces. Environ Microbiol 2006; 8:1177-90. [PMID: 16817926 DOI: 10.1111/j.1462-2920.2006.01007.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The community structure and composition of marine microbial biofilms established on glass surfaces was investigated across three differentially contaminated Antarctic sites within McMurdo Sound. Diverse microbial communities were revealed at all sites using fluorescence in situ hybridization (FISH) and denaturing gradient gel electrophoresis (DGGE) techniques. Sequencing of excised DGGE bands demonstrated close affiliation with known psychrophiles or undescribed bacteria also recovered from the Antarctic environment. The majority of bacterial sequences were affiliated to the Gammaproteobacteria, Cytophaga/Flavobacteria of Bacteroidetes (CFB), Verrucomicrobia and Planctomycetales. Principal components analysis of quantitative FISH data revealed distinct differences in community composition between sites. Each of the sites were dominated by different bacterial groups: Alphaproteobacteria, Gammaproteobacteria and CFB at the least impacted site, Cape Armitage; green sulfur and sulfate reducing bacteria near the semi-impacted Scott Base and Planctomycetales and sulfate reducing bacteria near the highly impacted McMurdo Station. The highest abundance of archaea was detected near Scott Base (2.5% of total bacteria). Multivariate analyses (non-metric multidimensional scaling and analysis of similarities) of DGGE patterns revealed greater variability in community composition between sites than within sites. This is the first investigation of Antarctic biofilm structure and FISH results suggest that anthropogenic impacts may influence the complex composition of microbial communities.
Collapse
Affiliation(s)
- Nicole S Webster
- Biological Sciences Department, University of Canterbury, Christchurch, New Zealand.
| | | |
Collapse
|
45
|
De Souza MJ, Nair S, Loka Bharathi PA, Chandramohan D. Metal and antibiotic-resistance in psychrotrophic bacteria from Antarctic Marine waters. ECOTOXICOLOGY (LONDON, ENGLAND) 2006; 15:379-84. [PMID: 16703457 DOI: 10.1007/s10646-006-0068-2] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/01/2006] [Indexed: 05/09/2023]
Abstract
In the wake of the findings that Antarctic krills concentrate heavy metals at ppm level, (Yamamoto et al. 1987), the Antarctic waters from the Indian side were examined for the incidence of metal and antibiotic-resistant bacteria during the austral summer (13th Indian Antarctic expedition) along the cruise track extending from 50 degrees S and 18 degrees E to 65 degrees S and 30 degrees E. The bacterial isolates from these waters showed varying degrees of resistance to antibiotics (Chloramphenicol, ampicillin, streptomycin, tetracycline and kanamycin) and metals (K(2)CrO(4), CdCl(2), ZnCl(2) and HgCl(2)) tested. Of the isolates screened, about 29% and 16% were resistant to 100 ppm of cadmium and chromium salt respectively. Tolerance to lower concentration (10 ppm) of mercury (Hg) was observed in 68% of the isolates. Depending on the antibiotics the isolates showed different percentage of resistance. Multiple drug and metal-resistance were observed. High incidence of resistance to both antibiotics and metals were common among the pigmented bacterial isolates. Increased resistance decreased the ability of bacteria to express enzymes. The results reiterate previous findings by other researchers that the waters of southern ocean may not be exempt from the spread of metal and antibiotic-resistance.
Collapse
Affiliation(s)
- Maria-Judith De Souza
- Microbiology Laboratory, Biological Oceanography Division, National Institute of Oceanography, Dona Paula, Goa 403 004, India.
| | | | | | | |
Collapse
|
46
|
Baker-Austin C, Wright MS, Stepanauskas R, McArthur JV. Co-selection of antibiotic and metal resistance. Trends Microbiol 2006; 14:176-82. [PMID: 16537105 DOI: 10.1016/j.tim.2006.02.006] [Citation(s) in RCA: 1141] [Impact Index Per Article: 60.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 02/02/2006] [Accepted: 02/23/2006] [Indexed: 11/25/2022]
Abstract
There is growing concern that metal contamination functions as a selective agent in the proliferation of antibiotic resistance. Documented associations between the types and levels of metal contamination and specific patterns of antibiotic resistance suggest that several mechanisms underlie this co-selection process. These co-selection mechanisms include co-resistance (different resistance determinants present on the same genetic element) and cross-resistance (the same genetic determinant responsible for resistance to antibiotics and metals). Indirect but shared regulatory responses to metal and antibiotic exposure such as biofilm induction also represent potential co-selection mechanisms used by prokaryotes. Metal contamination, therefore, represents a long-standing, widespread and recalcitrant selection pressure with both environmental and clinical importance that potentially contributes to the maintenance and spread of antibiotic resistance factors.
Collapse
|
47
|
Becker JM, Parkin T, Nakatsu CH, Wilbur JD, Konopka A. Bacterial activity, community structure, and centimeter-scale spatial heterogeneity in contaminated soil. MICROBIAL ECOLOGY 2006; 51:220-31. [PMID: 16463134 DOI: 10.1007/s00248-005-0002-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Accepted: 05/04/2005] [Indexed: 05/06/2023]
Abstract
In an anthropogenically disturbed soil (88% sand, 8% silt, 4% clay), 150-mg samples were studied to examine the fine-scale relationship of bacterial activity and community structure to heavy metal contaminants. The soils had been contaminated for over 40 years with aromatic solvents, Pb, and Cr. Samples from distances of <1, 5, 15, and 50 cm over a depth range of 40-90 cm underwent a sequential analysis to determine metabolic potential (from 14C glucose mineralization), bacterial community structure [using polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE)], and total extractable Pb and Cr levels. Metabolic potential varied by as much as 10,000-fold in samples <1 cm apart; log-log plots of metal concentration and microbial metabolic potential showed no correlation with each other. Overall, metal concentrations ranged from 9 to 29,000 mg kg(-1) for Pb and from 3 to 8500 mg kg(-1) for Cr with small zones of high contamination present. All regions exhibited variable metal concentrations, with some soil samples having 30-fold differences in metal concentration in sites <1 cm apart. Geostatistical analysis revealed a strong spatial dependence for all three parameters tested (metabolic activity, Pb, and Cr levels) with a range up to 30 cm. Kriging maps showed that in zones of high metal, the corresponding metabolic activity was low suggesting that metals negatively impacted the microbial community. PCR-DGGE analysis revealed that diverse communities were present in the soils with a random distribution of phylotypes throughout the sampling zones. These results suggest the presence of spatially isolated microbial communities within the soil profile.
Collapse
Affiliation(s)
- Joanna M Becker
- Department of Biological Sciences, Purdue University, 915 W. State Street, West Lafayette, IN 47907-2054, USA.
| | | | | | | | | |
Collapse
|
48
|
Stepanauskas R, Glenn TC, Jagoe CH, Tuckfield RC, Lindell AH, McArthur JV. Elevated microbial tolerance to metals and antibiotics in metal-contaminated industrial environments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:3671-8. [PMID: 15952371 DOI: 10.1021/es048468f] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
To test the hypothesis that industrial metal contaminants select for microorganisms tolerant to unrelated agents, such as antibiotics, we analyzed metal and antibiotic tolerance patterns in microbial communities in the intake and discharge of ash settling basins (ASBs) of three coal-fired power plants. High-throughput flow-cytometric analyses using cell viability probes were employed to determine tolerances of entire bacterioplankton communities, avoiding bias toward culturable versus nonculturable bacteria. We found that bacterioplankton collected in ASB discharges were significantly more tolerant to metal and antibiotic exposures than bacterioplankton collected in ASB intakes. Optical properties of microorganisms collected in ASB discharges indicated no defensive physiological adaptations such as formation of resting stages or excessive production of exopolymers. Thus, it is likely that the elevated frequency of metal and antibiotic tolerances in bacterioplankton in ASB discharges were caused by shifts in microbial community composition, resulting from the selective pressure imposed by elevated metal concentrations or organic toxicants present in ASBs.
Collapse
Affiliation(s)
- Ramunas Stepanauskas
- Savannah River Ecology Laboratory, University of Georgia, Drawer E, Aiken, South Carolina 29802, USA.
| | | | | | | | | | | |
Collapse
|
49
|
Gillan DC, Danis B, Pernet P, Joly G, Dubois P. Structure of sediment-associated microbial communities along a heavy-metal contamination gradient in the marine environment. Appl Environ Microbiol 2005; 71:679-90. [PMID: 15691917 PMCID: PMC546797 DOI: 10.1128/aem.71.2.679-690.2005] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial community composition and structure were characterized in marine sediments contaminated for >80 years with cadmium, copper, lead, and zinc. Four sampling sites that encompass a wide range of sediment metal loads were compared in a Norwegian fjord (Sorfjord). HCl-extractable metals and organic matter constantly decreased from the most contaminated site (S1) to the control site (S4). All sampling sites presented low polychlorinated biphenyl (PCB) concentrations (Sigma(7)PCB < 7.0 ng g [dry weight](-1)). The biomass ranged from 4.3 x 10(8) to 13.4 x 10(8) cells g (dry weight) of sediments(-1) and was not correlated to metal levels. Denaturing gradient gel electrophoresis indicated that diversity was not affected by the contamination. The majority of the partial 16S rRNA sequences obtained were classified in the gamma- and delta-Proteobacteria and in the Cytophaga-Flexibacter-Bacteroides (CFB) bacteria. Some sequences were closely related to other sequences from polluted marine sediments. The abundances of seven phylogenetic groups were determined by using fluorescent in situ hybridization (FISH). FISH was impaired in S1 by high levels of autofluorescing particles. For S2 to S4, the results indicated that the HCl-extractable Cu, Pb, and Zn were negatively correlated with the abundance of gamma-Proteobacteria and CFB bacteria. delta-Proteobacteria were not correlated with HCl-extractable metals. Bacteria of the Desulfosarcina-Desulfococcus group were detected in every site and represented 6 to 14% of the DAPI (4',6'-diamidino-2-phenylindole) counts. Although factors other than metals may explain the distribution observed, the information presented here may be useful in predicting long-term effects of heavy-metal contamination in the marine environment.
Collapse
MESH Headings
- Colony Count, Microbial
- DNA, Bacterial/analysis
- DNA, Ribosomal/analysis
- Ecosystem
- Electrophoresis, Agar Gel/methods
- Geologic Sediments/chemistry
- Geologic Sediments/microbiology
- Gram-Negative Bacteria/classification
- Gram-Negative Bacteria/genetics
- Gram-Negative Bacteria/isolation & purification
- In Situ Hybridization, Fluorescence
- Indoles
- Metals, Heavy/analysis
- Molecular Sequence Data
- Phylogeny
- Polychlorinated Biphenyls/analysis
- RNA, Ribosomal, 16S/genetics
- Seawater/chemistry
- Seawater/microbiology
- Sequence Analysis, DNA
- Water Pollutants, Chemical/analysis
Collapse
Affiliation(s)
- David C Gillan
- Marine Biology Laboratory, CP160/15, Université Libre de Bruxelles, 50 Ave. Roosevelt, B-1050 Brussels, Belgium.
| | | | | | | | | |
Collapse
|
50
|
Saraswat R, Kurtarkar SR, Mazumder A, Nigam R. Foraminifers as indicators of marine pollution: a culture experiment with Rosalina leei. MARINE POLLUTION BULLETIN 2004; 48:91-96. [PMID: 14725879 DOI: 10.1016/s0025-326x(03)00330-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In order to develop a viable foraminiferal proxy for heavy metal pollutants, juvenile specimens of Rosalina leei were subjected to different mercury concentrations (0-180 ng/l). Initially considerable growth was observed in specimens kept in saline water having a mercury concentration up to 100 ng/l. But with the gradual increase in concentration of mercury the growth rate started decreasing. Total growth achieved was significantly lower in case of specimens kept at relatively higher mercury concentrations then those maintained in normal saline water. The most significant result of this experiment was the addition of abnormal chambers in the specimens kept at higher mercury concentration. Later the specimens kept at highest concentration (180 ng/l) were subjected to progressively increasing concentration of mercury to see the further effects and it was found that the specimens were still living at as high a mercury concentration as 260 ng/l although there was no growth.
Collapse
Affiliation(s)
- R Saraswat
- National Institute of Oceanography, Dona Paula, 403 004 Goa, India.
| | | | | | | |
Collapse
|