1
|
Fox J, Cummins B, Moseley RC, Gameiro M, Haase SB. A yeast cell cycle pulse generator model shows consistency with multiple oscillatory and checkpoint mutant datasets. Math Biosci 2024; 367:109102. [PMID: 37939998 PMCID: PMC10842220 DOI: 10.1016/j.mbs.2023.109102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/13/2023] [Accepted: 10/27/2023] [Indexed: 11/10/2023]
Abstract
Modeling biological systems holds great promise for speeding up the rate of discovery in systems biology by predicting experimental outcomes and suggesting targeted interventions. However, this process is dogged by an identifiability issue, in which network models and their parameters are not sufficiently constrained by coarse and noisy data to ensure unique solutions. In this work, we evaluated the capability of a simplified yeast cell-cycle network model to reproduce multiple observed transcriptomic behaviors under genomic mutations. We matched time-series data from both cycling and checkpoint arrested cells to model predictions using an asynchronous multi-level Boolean approach. We showed that this single network model, despite its simplicity, is capable of exhibiting dynamical behavior similar to the datasets in most cases, and we demonstrated the drop in severity of the identifiability issue that results from matching multiple datasets.
Collapse
Affiliation(s)
- Julian Fox
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA.
| | | | - Marcio Gameiro
- Department of Mathematics, Rutgers University, New Brunswick, NJ, USA
| | | |
Collapse
|
2
|
Cummins B, Motta FC, Moseley RC, Deckard A, Campione S, Gameiro M, Gedeon T, Mischaikow K, Haase SB. Experimental guidance for discovering genetic networks through hypothesis reduction on time series. PLoS Comput Biol 2022; 18:e1010145. [PMID: 36215333 PMCID: PMC9584434 DOI: 10.1371/journal.pcbi.1010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 10/20/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are controlled by a relatively small "core" network of transcription factors and post-translational modifiers, working in concerted mutual regulation. Recent work suggests that system-independent, quantitative features of the dynamics of gene expression can be used to identify core regulators. We introduce an approach of iterative network hypothesis reduction from time-series data in which increasingly complex features of the dynamic expression of individual, pairs, and entire collections of genes are used to infer functional network models that can produce the observed transcriptional program. The culmination of our work is a computational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inherent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to experimentally infer network structure. We demonstrate the capability of this integrated computational pipeline on synthetic and yeast cell-cycle data.
Collapse
Affiliation(s)
- Breschine Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Francis C. Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Robert C. Moseley
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Anastasia Deckard
- Geometric Data Analytics, Durham, North Carolina, United States of America
| | - Sophia Campione
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| | - Marcio Gameiro
- Department of Mathematics, Rutgers University, New Brunswick, New Jersey, United States of America
- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Tomáš Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, United States of America
| | - Konstantin Mischaikow
- Department of Mathematics, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Steven B. Haase
- Department of Biology, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Smith LM, Motta FC, Chopra G, Moch JK, Nerem RR, Cummins B, Roche KE, Kelliher CM, Leman AR, Harer J, Gedeon T, Waters NC, Haase SB. An intrinsic oscillator drives the blood stage cycle of the malaria parasite Plasmodium falciparum. Science 2020; 368:754-759. [PMID: 32409472 DOI: 10.1126/science.aba4357] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/11/2020] [Accepted: 04/06/2020] [Indexed: 12/14/2022]
Abstract
The blood stage of the infection of the malaria parasite Plasmodium falciparum exhibits a 48-hour developmental cycle that culminates in the synchronous release of parasites from red blood cells, which triggers 48-hour fever cycles in the host. This cycle could be driven extrinsically by host circadian processes or by a parasite-intrinsic oscillator. To distinguish between these hypotheses, we examine the P. falciparum cycle in an in vitro culture system and show that the parasite has molecular signatures associated with circadian and cell cycle oscillators. Each of the four strains examined has a different period, which indicates strain-intrinsic period control. Finally, we demonstrate that parasites have low cell-to-cell variance in cycle period, on par with a circadian oscillator. We conclude that an intrinsic oscillator maintains Plasmodium's rhythmic life cycle.
Collapse
Affiliation(s)
| | - Francis C Motta
- Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL, USA
| | - Garima Chopra
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - J Kathleen Moch
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Robert R Nerem
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Bree Cummins
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Kimberly E Roche
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC, USA
| | | | - Adam R Leman
- Department of Biology, Duke University, Durham, NC, USA
| | - John Harer
- Department of Mathematics, Duke University, Durham, NC, USA
| | - Tomas Gedeon
- Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA
| | - Norman C Waters
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Steven B Haase
- Department of Biology, Duke University, Durham, NC, USA. .,Department of Medicine, Duke University, Durham, NC, USA
| |
Collapse
|