1
|
Nifant’ev IE, Komarov PD, Kostomarova OD, Kolosov NA, Ivchenko PV. MAO- and Borate-Free Activating Supports for Group 4 Metallocene and Post-Metallocene Catalysts of α-Olefin Polymerization and Oligomerization. Polymers (Basel) 2023; 15:3095. [PMID: 37514483 PMCID: PMC10384419 DOI: 10.3390/polym15143095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/15/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
Modern industry of advanced polyolefins extensively uses Group 4 metallocene and post-metallocene catalysts. High-throughput polyolefin technologies demand the use of heterogeneous catalysts with a given particle size and morphology, high thermal stability, and controlled productivity. Conventional Group 4 metal single-site heterogeneous catalysts require the use of high-cost methylalumoxane (MAO) or perfluoroaryl borate activators. However, a number of inorganic phases, containing highly acidic Lewis and Brønsted sites, are able to activate Group 4 metal pre-catalysts using low-cost and affordable alkylaluminums. In the present review, we gathered comprehensive information on MAO- and borate-free activating supports of different types and discussed the surface nature and chemistry of these phases, examples of their use in the polymerization of ethylene and α-olefins, and prospects of the further development for applications in the polyolefin industry.
Collapse
Affiliation(s)
- Ilya E. Nifant’ev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| | - Pavel D. Komarov
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
| | | | - Nikolay A. Kolosov
- NIOST LLC, Kuzovlevsky Tr. 2-270, 634067 Tomsk, Russia; (O.D.K.); (N.A.K.)
| | - Pavel V. Ivchenko
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky Av. 29, 119991 Moscow, Russia; (I.E.N.); (P.D.K.)
- Chemistry Department, M.V. Lomonosov Moscow State University, Leninskie Gory 1-3, 119991 Moscow, Russia
| |
Collapse
|
2
|
Groch P, Bihun-Kisiel A, Piontek A, Ochędzan-Siodłak W. Structural and Thermal Properties of Ethylene-Norbornene Copolymers Obtained Using Vanadium Homogeneous and SIL Catalysts. Polymers (Basel) 2020; 12:polym12112433. [PMID: 33105638 PMCID: PMC7690451 DOI: 10.3390/polym12112433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022] Open
Abstract
The series of ethylene-norbornene (E-NB) copolymers was obtained using different vanadium homogeneous and supported ionic liquid (SIL) catalyst systems. The 13C and 1H NMR (carbon and proton nuclear magnetic resonance spectroscopy) together with differential scanning calorimetry (DSC) were applied to determine the composition of copolymers such as comonomer incorporation (CNB), monomer dispersity (MD), monomer reactivity ratio (re), sequence length of ethylene (le) and tetrad microblock distributions. The relation between the type of catalyst, reaction conditions and on the other hand, the copolymer microstructure, chain termination reaction analyzed by the type of unsaturation are discussed. In addition, the thermal properties of E-NB copolymers such as the melting and crystallization behavior, like also the heterogeneity of composition described by successive the self-nucleation and annealing (SSA) and the dispersity index (DI) were determined.
Collapse
|
3
|
Beillard A, Golliard E, Gillet V, Bantreil X, Métro TX, Martinez J, Lamaty F. Expedient Mechanosynthesis of N,N-Dialkyl Imidazoliums and Silver(I)-Carbene Complexes in a Ball-Mill. Chemistry 2015; 21:17614-7. [PMID: 26489706 DOI: 10.1002/chem.201503472] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 09/22/2015] [Indexed: 11/09/2022]
Abstract
The absence of solvent, associated with intensive mechanical agitation, allowed the first mechanosynthesis of high-value silver(I)-carbene complexes and the corresponding N,N-dialkylimidazolium precursors. This procedure gave outstanding results in terms of yield and reaction time, when compared to solution-based conditions previously described in literature, and was generalized to unprecedented compounds. Silver(I)-carbene complexes could either be obtained from N,N-dialkylimidazolium salts or directly from imidazole and alkyl halides in a one-pot two-step procedure without isolating the imidazolium intermediate. Additionally, an efficient one-pot three-step sequence, including imidazole alkylation, silver metalation, and transmetalation is reported.
Collapse
Affiliation(s)
- Audrey Beillard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France)
| | - Ethan Golliard
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France)
| | - Valentin Gillet
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France)
| | - Xavier Bantreil
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France).
| | - Thomas-Xavier Métro
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France).
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France)
| | - Frédéric Lamaty
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université Montpellier, ENSCM, Université de Montpellier, Place Eugène Bataillon, 34095 Montpellier cedex 5 (France).
| |
Collapse
|
4
|
|
5
|
High crystallinity polyethylene obtained in biphasic polymerization using pyridinium chloroaluminate ionic liquid. JOURNAL OF POLYMER RESEARCH 2014. [DOI: 10.1007/s10965-014-0558-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|