1
|
Mangala Gowri V, Chanpuang P, Bunrueang W, Imboon T, Khamboonrueang D, Issro C, Shima M, Thongmee S. Exploring Electrochemical Sensing for Fungicide Detection: Utilization of Newly Synthesized Oligomers. ACS OMEGA 2024; 9:36622-36634. [PMID: 39220534 PMCID: PMC11359631 DOI: 10.1021/acsomega.4c04959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/31/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
The determination of thiabendazole is crucial for ensuring food safety, environmental protection, and compliance with regulatory standards. Accurate detection helps prevent harmful exposure, ensuring the safety of agricultural products and safeguarding public health. Therefore, this study investigates the electrochemical sensing capabilities of newly synthesized oligo 3-amino-5-mercapto-1,2,4-triazole (oligo AMTa) using hydrogen tetrachloroaurate (III) (HAuCl4) as an oxidizing agent at room temperature for thiabendazole (TBZ) detection, employing a simple electrode fabrication process. The prepared oligo AMTa was thoroughly characterized using UV-visible spectroscopy, scanning electron microscopy (SEM), Energy Dispersive X-ray Analysis (EDAX), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution mass spectroscopy (HR-MS), and Fourier-transform infrared spectroscopy (FT-IR) to confirm its oligomerization structure and properties. The IR spectrum of oligo AMTa reveals a new peak at 1449 cm-1, indicating the conversion of -NH2 groups to -N=N- groups during oligomerization, unlike AMTa. Additionally, the disappearance of the -SH group peak at 2615 cm-1 in oligo AMTa suggests an S-S linkage involvement in the oligomerization process. In the oligo AMTa XPS spectrum, the presence of C=N is displayed by a small peak at 287.3 eV, and oligomerization via -NH and N=N is confirmed by the lack of a 284.0 eV peak for C-C or C=C. Gold nanoparticle formation is not demonstrated by the 84.8 eV peak, which implies that the gold atom is not in the Au0 state. The HR-MS spectrum of oligo AMTa shows a peak at m/z 564.08, indicating a chain of five monomers, and another peak at m/z 435.03, confirming the presence of a tetrameric form of AMTa. After that, the GC electrode was directly linked to the oligo AMTa by the potentiodynamic method. SEM, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) were all employed to confirm the fabrication of oligo AMTa. The SEM image illustrates the formation of a particlelike structure with a uniform size of the oligomer after cycling in 0.1 M H2SO4. After electrocycling, the size of the oligomer was reduced from 2.6 μm to 30 nm. The oligo AMTa-modified electrode possesses the highest electroactive surface area and electrical conductivity due to several key factors. First, the presence of amino (-NH2) and thiol (-SH) functional groups in AMTa enhances the surface coverage and density of electroactive sites, increasing the electroactive surface area. Additionally, the conjugated structure of AMTa facilitates efficient electron transfer, resulting in enhanced electrical conductivity compared to unmodified electrodes. Eventually, the electrochemical oxidation of TBZ occurred using the fabricated electrodes. The GC/oligo AMTa electrode exhibited a four-fold increase in oxidation current for TBZ compared to unmodified GC electrodes. This enhancement is due to the improved surface properties from the oligo AMTa modification, which significantly boosts TBZ adsorption through strong interactions like hydrogen bonding and π-π stacking. These interactions, along with the increased surface area and catalytic properties, facilitate effective electron transfer, resulting in a higher oxidation current. As an outcome, the film was employed to determine the sensitivity level of TBZ, and a LOD of 1.8 × 10-11 M (S/N = 3) was found. The straightforward method's practical utility was proven by measuring TBZ in tap water, water spinach, and pear juice samples. The comprehensive characterization of oligo AMTa provided insights into its interaction mechanisms with thiabendazole, contributing to the development of a reliable, cost-effective, and efficient sensor.
Collapse
Affiliation(s)
- Veeramani Mangala Gowri
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
- Department
of Chemistry, The Gandhigram Rural Institute, Gandhigram, 624 302 Dindigul, Tamilnadu, India
| | - Pontagarn Chanpuang
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Warit Bunrueang
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Tanawat Imboon
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| | - Dusadee Khamboonrueang
- Faculty
of Science and Technology, Nakhon Sawan
Rajabaht University, Mueang District, Nakhon Sawan 60000, Thailand
| | - Chaisak Issro
- Department
of Physics, Faculty of Science, Burapha
University, Chonburi 10131, Thailand
| | - Mutsuhiro Shima
- Department
of Materials Science and Processing, Graduate School of Natural Science
and Technology, Gifu University, Yanagida, Gifu 501-1193, Japan
| | - Sirikanjana Thongmee
- Department
of Physics, Faculty of Science, Kasetsart
University, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Usman M, Yu H, Wang L, Zhizhko PA, Lemenovskiy DA, Zarubin DN, Khan A, Naveed KUR, Nazir A, Fahad S. Synthesis of ferrocenylated-aminopyridines and ferrocenylated-aminothiazoles and their anti-migration and burning rate catalytic properties. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121336] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
3
|
Synthesis of Poly(2-aminothiazole)-Coated Polystyrene Particles and Their Excellent Hg(II) Adsorption Properties. Polymers (Basel) 2020; 12:polym12040749. [PMID: 32235432 PMCID: PMC7240462 DOI: 10.3390/polym12040749] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/22/2020] [Accepted: 03/26/2020] [Indexed: 11/17/2022] Open
Abstract
Synthesis of conjugated polymer-coated latex particles is an effective method to improve the poor processability of conjugated polyheterocycles. The key to success is to control the overlayer thickness so it is less than the size of the solvated layer of polymeric stabilizer. This paper presents a protocol to coat polymer latex particles with poly(2-aminothiazole) (PAT), which is a relatively new heterocyclic conjugated polymer. The protocol is based on chemical oxidative polymerizations of 2-aminothiazole using copper chloride as the oxidant at a fixed oxidant/monomer molar ratio of 0.5 in aqueous media in the presence of poly(N-vinyl-2-pyrrolidone)-functionalized polystyrene (PS) latex. The effects of monomer concentration, PS concentration, and polymerization temperature on the morphology of the PAT-coated PS composite particles were investigated by SEM and TEM, and the resulting composite particles characterized by FTIR and XPS. Optimization of the initial monomer concentration allowed colloidally stable PAT-coated PS composite particles to be formed at ambient temperature, and the PAT loading was easily adjusted by varying the initial PS concentration. The Hg(II) adsorption properties of selected PAT-coated PS composite particles were assessed preliminarily. The maximum adsorption capacity at 25 °C reached 440.25 mg/g, which is much higher than many other adsorbents.
Collapse
|
6
|
Zou H, Lv PF, Wang X, Wu D, Yu DG. Electrospun poly(2-aminothiazole)/cellulose acetate fiber membrane for removing Hg(II) from water. J Appl Polym Sci 2017. [DOI: 10.1002/app.44879] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; 516 Jungong Road Shanghai 200093 China
| | - Peng-Fei Lv
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; 516 Jungong Road Shanghai 200093 China
| | - Xia Wang
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; 516 Jungong Road Shanghai 200093 China
| | - Di Wu
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; 516 Jungong Road Shanghai 200093 China
| | - Deng-Guang Yu
- School of Materials Science and Engineering; University of Shanghai for Science and Technology; 516 Jungong Road Shanghai 200093 China
| |
Collapse
|
7
|
Zou H, Wang L, Wang X, Lv P, Liao Y. Chemical Oxidative Polymerization of 2-Aminothiazole in Aqueous Solution: Synthesis, Characterization and Kinetics Study. Polymers (Basel) 2016; 8:polym8110407. [PMID: 30974685 PMCID: PMC6432296 DOI: 10.3390/polym8110407] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/15/2016] [Accepted: 11/16/2016] [Indexed: 11/16/2022] Open
Abstract
The chemical oxidative polymerization of 2-aminothiazole (AT) was studied in aqueous solution using copper chloride (CuCl2) as an oxidant. The effect of varying the reaction temperature, reaction time and oxidant/monomer molar ratio on the polymer yield was investigated. The resulting poly(2-aminothiazole)s (PATs) were characterized by FTIR, 1H NMR, UV-vis, gel permeation chromatography, scanning electron microscopy, thermogravimetric analysis and four-point probe electrical conductivity measurements. Compared with a previous study, PATs with higher yield (81%) and better thermal stability could be synthesized. The chemical oxidative polymerization kinetics of AT were studied for the first time. The orders of the polymerization reaction with respect to monomer concentration and oxidant concentration were found to be 1.14 and 0.97, respectively, and the apparent activation energy of the polymerization reaction was determined to be 21.57 kJ/mol.
Collapse
Affiliation(s)
- Hua Zou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Lu Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Xia Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Pengfei Lv
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
8
|
Nabid MR, Bide Y. Morphological Investigation of Poly(2-aminothiazole) Prepared by Rapid Initiated Polymerization. ADVANCES IN POLYMER TECHNOLOGY 2016. [DOI: 10.1002/adv.21752] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Mohammad Reza Nabid
- Department of Polymer; Faculty of Chemistry; Shahid Beheshti University, G.C.; P.O. Box 1983969411 Tehran Iran
| | - Yasamin Bide
- Department of Polymer; Faculty of Chemistry; Shahid Beheshti University, G.C.; P.O. Box 1983969411 Tehran Iran
| |
Collapse
|
9
|
Wang X, Lv P, Zou H, Li Y, Li X, Liao Y. Synthesis of Poly(2-aminothiazole) for Selective Removal of Hg(II) in Aqueous Solutions. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.5b04630] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xia Wang
- School
of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Pengfei Lv
- School
of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Hua Zou
- School
of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Ying Li
- School
of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Xiaoyan Li
- School
of Materials Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yaozu Liao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
11
|
Bide Y, Nabid MR, Dastar F. Poly(2-aminothiazole) as a unique precursor for nitrogen and sulfur co-doped porous carbon: immobilization of very small gold nanoparticles and its catalytic application. RSC Adv 2015. [DOI: 10.1039/c5ra09272h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
We report the synthesis of poly(2-aminothiaozle) with a plate structure containing nanoparticles, and the one-step synthesis of nitrogen and sulfur co-doped porous carbon materials using P2AT as the source of both N and S.
Collapse
Affiliation(s)
- Yasamin Bide
- Faculty of Chemistry
- Department of Polymer
- Shahid Beheshti University
- Tehran
- Iran
| | - Mohammad Reza Nabid
- Faculty of Chemistry
- Department of Polymer
- Shahid Beheshti University
- Tehran
- Iran
| | - Fateme Dastar
- Faculty of Chemistry
- Department of Polymer
- Shahid Beheshti University
- Tehran
- Iran
| |
Collapse
|